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1. Introduction

Roadway engineering and congtruction pre-date Roman times. Over the centuries, standards in design
and congtruction and the documentation of practice have been raised to very high levels. In the process
of modernizing and improving design, construction, and maintenance, new approaches and

technol ogies have been incorporated into civil engineering practice. Initially, many of the new
technologies did not achieve the levels of reliability and standardization required by the civil

engineering profession. Regrettably, many expert systemsfal into this category, due partly to the lack
of verification, validation, and evauation standards.

The gods of expert systems are usualy more ambitious than those of conventiona or agorithmic
programs. They frequently perform not only as problem solvers but aso as intelligent assistants and
training aids. Expert systems have great potential for capturing the knowledge and experience of
current senior professionals and making the expert’ swisdom available to othersin the form of training
ads or technica support tools. Applications include design, operations, ingpection, maintenance,
training, and many others.

In traditiond software engineering, testing [verification, validation and evaluation (VV&E)] is claimed
to be an integrd part of the design and development process. However, in the field of expert systems,
thereislittle consensus on what testing is necessary or how to perform it. Further, many of the
procedures that have been devel oped are so poorly documented that it is difficult, if not impossible, for
them to be reproduced by anyone other than the originator. Also, many procedures used for VV&E
were designed to be specific to the particular domain in which they were introduced. The complexity
and uncertainty related to these tasks has led to a Situation where most expert systems are not
adequately tested.

Impelled by the existing environment of lack of consensus among experts and inadequate procedures
and toals, the FHWA developed this guideline for expert system verification, vaidation, and evalua-
tion, complete with software to implement recommended techniques. The guiddineis needed because
knowledge engineers today do not often design and carry out rigorous test plans for expert systems.
The software is necessary because red-world knowledge bases containing hundreds of rules and
dozensof variables are difficult for humansto assmilate and evaluate. Computerized verification and
vaidation (V& V) tools would aso enable the knowledge engineer to use interim V&V reportsto
guide knowledge acquisition and coding, something that is too labor-intensive with hand methods. The
techniques presented represent aworkable solution to adifficult problem. Hopefully they also provide
abadsfor further enhancements and improvements.

Basic Definitions

This guide covers verification, validation, and evaluation of expert systems. An expert systemisa
computer program that includes a representation of the experience, knowledge, and reasoning
processes of an expert. Figure 5.1 shows asix rule expert system that will be used as an example
throughout this guide.



Verification of an expert system, or any computer system for that matter, isthe task of determining
that the system is built according to its specifications. Validation isthe process of determining that the
system actudly fulfills the purpose for which it was intended. Evaluation reflects the acceptance of the
system by the end users and its performance in the field. In other words (Miskell et al, 1989):

Verify to show the system is built right.

Validate to show theright system was built.

Evaluate to show the usefulness of the system.
\grification

As dtated above, verification asks the question "is the system built right?," i.e., verification is checking
that the knowledge base is complete and that the inference engine can properly manipulate this
information. Issuesraised during verification include:

Doesthe design reflect the requirements? Aredl of the issues contained in the requirements
addressed in the design?

Doesthe detailed design reflect the design goas?

Doesthe code accurately reflect the detailed design®?

Is the code correct with respect to the language syntax?

When the program has been verified, it is assured that there are no "bugs' or technicd errors.
Validation

Validation answersthe question "isit the right syssem?’ “is the knowledge base correct?' or "isthe
program doing the job it was intended to do?" Thus, vaidation is the determination that the completed
expert system performs the functions in the requirements specification and is usable for the intended
purposes. It isimpossible to have an absolute guarantee that a program satisfies its specification, only a
degree of confidence that a program isvalid can be obtained. |ssues addressed during vaidation of an
expert system include:



How well do inferences made compare with knowledge and heurigtics of expertsin the fied?
How wéll do inferences made compare with historic (known) data?

What fraction of pertinent empirical observations can be smulated by the system?

What fraction of modd predictions are empirically correct?

What fraction of the system parameters does the modd attempt to mimic?

Evaluation

Evduation addresses the issue "isthe system valuable?' Thisis reflected by the acceptance of the
system by its end users and the performance of the system in its gpplication. Pertinent issuesin
evauation are:

Isthe system user friendly, and do the users accept the system?

Does the expert system offer an improvement over the practices it isintended to supplement?
Is the system useful as atraining tool?

Is the system maintainable by other than the developers?

To illugtrate the difference, the task might be to build a system that computes the serviceability
coefficient of pavement. The specifications for the system are contained in textbooks that define the
coefficient. To validate the system one must test the servicesbility of the program on examplesin the
texts and other test cases and compare the results of the program with independently computed
coefficients for the same examples. It isimportant to use atest set that covers al the important cases
and contains enough examples to make sure that correct results are not just anomalies.

Once the system is vaidated, the next step isto verify it. Thisinvolves completeness and consstency
checks and examining for technica correctness using techniques such as are described in this
handbook. Thefina step isevauation. For the serviceability program, this means giving the system to
engineersto use in computing the coefficient. Although the system is known to produce the correct
result, it could fail the evaluation because it is too cumbersome to use, requires data that are not readily
avallable, does not redly save any effort, does something that can be estimated accurately enough
without a computer, solves a problem rarely needed in practice, or produces aresult not universaly
accepted because different people define the coefficient in different ways.

Need for V&V

It isvery important to verify and vaidate expert sysems aswell asal other software. When software
is part of amachine or structure that can cause death or seriousinjury, V&V isespecidly criticd. In
fact, there have dready been failures of expert systems and other software that have resulted in death.
For example, arobotized overhead material mover struck an overhead crane at an Alcoa auminum
plant, killing the crane operator, because its narrow-field vision system saw only an interior region of
the crane front, ablank field to the robot. In another case, amuch-patched system for cancer radiation
treatment gave afatal doseto at least one patient, because the operator overrode the emergency stop;
it had given repeated false darmsin past Stuations.



Expert systems use computationa techniques that involve making guesses, just as human experts do.
Like human experts, the expert system will be wrong some of the time, even if the expert system
contains no errors. The knowledge on which the expert system is based, even if it isthe best available,
does not completely predict what will happen. For this reason done, it isimportant for the human
expert to vaidate that the advice being given by the expert systemissound. Thisis especidly critica
when the expert system will be used by persons with less expertise than the expert, who can not
themsalves judge the accuracy of the advice from the expert system.

In addition to mistakes which an expert system will make because the available knowledge is not
aufficient for prediction in every case, expert systems contain only alimited amount of knowledge
concentrated in carefully defined knowledge areas. Today's expert systems have no common sense
knowledge. They only "know" exactly what has been put into their knowledge bases. Thereisno
underlying truth or fact structure to which it can turn in cases of ambiguity. This means that an expert
gystem containing some errorsin its knowledge base can make mistakes that would seem ridiculousto
ahuman, and not redlize that a mistake had occurred. [On the other hand, expert systems do not get
tired or sick or bored or fal in love, and therefore avoid some of the "careless’ mistakesthat aperson
might make, particularly on repetitive problems] If the expert system does not realize its mistake, and
it isbeing used by a person with limited expertise, there is nobody to detect the error. Therefore,
where the expert system is going to be used by someone without expertise, and the decisons made
have the potentia for harm if made badly, the very best effort at verification and validation is required.

Problems in Implementing Verification, Validation, and Evaluation for Expert
Systems

One of the impediments to a successful V&V effort for expert systlemsis the nature of expert systems
themsaves. Expert systems are often employed for working with incomplete or uncertain information
or "ill structured” Situations (Giarratano and Riley, 1989). These are cases where, asin adiagnostic
expert system, not al symptomsfor al mafunctions are known in advance. In these Stuations,
reasoning offers the only hope for agood solution. Since expert system specifications often do not
provide a precise criterion againg which to test, there isa problem in verifying, validating, and
evauating expert systems according to the definitionsin section 1. For example, specifying that a
gpeech recognition system should understand speech does not define a testable standard for the system.
Some vaguenessin the specifications for expert sysemsis unavoidable; if there are precise enough
gpecifications for asystem, it may be more effective to design the system using conventional
programming languages.

Another problem in VV&E for expert systemsisthat expert system languages are not structured to
accommodate the relatively unstructured applications. However, rigid structure in implementing the
codeis akey technique used in writing verifiable code, such as the Cleanroom approach.

Cleanroom software specification (Linger, 1993) begins with a specification of required system
behavior and architecture. Many expert systems cannot conform to therigidity required by this quality
control method used principally for conventiona programming.



Intended Audiences for the Handbook

The following table describes the intended audiences for the handbook, and the parts of the handbook
that will be most useful to these audiences:

Table 1-1: Intended Audiences for the Handbook

Audience Task to be Performed Part of Handbook
Managers Manage expert system project Chp. 1: Introduction
Chp. 3: Planning And Management
Knowledge Engineers | Build new expert systlems Chp. 4: Developing aVerifigble System
Chp. 7: Knowledge Modeling
Chp. 9: Vdidating Undelying Knowledge
Knowledge Engineers | Perform VV&E on existing Chp. 5: TheBasic Proof Method
systems Chp. 6: Finding Partitions without Expert Knowledge

Chp. 8: VV&E for Smdl Systems
Chp. 9: Vdidating Undelying Knowledge

Highway Engineers

Ensure that a correct new expert
system is built

Chp. 3: VV&E on New Systems
Chp. 10: Testing
Chp. 11: Evauation & Manag. Issues

Highway Engineers

Ensure that an existing expert
system has been vdidated

Chp. 3: VV&E on Exiging Systems
Chp. 10: Testing
Chp. 11: Evaluation & Manag. Issues

Software Researchers

Critique and extend VV&E
methods

Chp. 22 V&V: Past Practice

Chp. 6: Finding Partitions without Expert Knowledge
Chp. 7: Knowledge Modeling

Chp. 8: VV&E for Smdl Systems

Chp. 9: Vdidating Undelying Knowledge
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2. Planning and M anagement

The purpose of this chapter isto provide guidance on planning and decison making early in an expert
systems project. This concept gpplies not only to new developments, but to improved thinking and
decison making at any stage from development through implementation. This includes planning the
verification, validation, and evauation of an dready developed system. The advice given here should
ad in developing clear problem definition and thorough system requirements, reflecting redism from
both technical and organizational viewpoints. Risk identification information is aso provided.

Introduction

The development, testing and evauation of an expert system is a demanding process. Itiscriticd in
the planning stages that the necessary resources are secured and that the proper development team is
assembled. Both the successes and failures in the development of expert systems can usudly be traced
back to the planning phase of development. The following are important elements of a successful
expert system devel opment program:

Management support in the ingtitution sponsoring the development of the expert systlemiis
necessary. This support must include the commitment of both staff and financia resources needed
to successfully develop and implement the system.

The god of the expert system and the exact uses of the end product must be clearly defined and
understood by al involved from executive management to end users. Full knowledge and
understanding of the costs and risksinvolved are also essentid.

Recognized expertsin the gppropriate technica fields must be available and have sufficient time
committed to the expert system development project.

Influential advocate(s) of the system are essential. 1dedlly, there should be advocates from both the
technica development area and the end user community.

The end users are pivota to the development of expert systems and must be involved from the
planning through the field evaluation stages. The end users provide definition of the skill level of
the user community, information on how problems are addressed in practice versus the prescribed
solutions, advice on how the system must function (interact with the user) to be accepted by the
user community, and a cadre of supporters to test and promote the system onceit is completed.



Structured planning is recommended for the successful development of asystem. This should
include the problem/need to be addressed and the system benefits, organizational risk factors,
technicdl risk factors, and user risk factors. Development milestones must be identified and the
system demonstrated at each milestone.

Knowledge dicitation from the expertsis vita throughout the duration of the expert system
development. Itisvita both in terms of building the system and for maintaining interest and
continuity throughout the project.

The verification, vaidation, and evauation must be considered in al phases of the system
development. Since some aspects of the verification, validation, and evauation may not be
performed by the developers, it is critical that VV & E plans be clearly identified and documented.

Maintainability must be consdered in al phases of the system development. Since the maintenance
will probably not be performed by the devel opers, the system structure must be clear and
sraightforward. Logica and understandable names should be used for objects and knowledge
sructures within the system. Clear and complete system documentation is required for effective
maintenance.

The sdection of the development tool for an expert system project should be performed by a
qudified knowledge engineer or expert systems developer. Thisiscritica becausethere are
sgnificant differences among the development tools. These differences are not explained in
avallable literature and the gpplication should dictate the selection of the development tool with its
gpecific knowledge handling and operationd characteristics.

Figure 2-1 showstheinitia project planning process. This process can be applied to either anew
development of the VV & E for an existing (but not adequately tested) system, or an existing system.

organiZ:

proble™ Neeg ¢ potential Sol'n, g. costl Benefits

Technic.

PROCEED

« Problem Definition

« Input for:

- Specific Customer
Requirements

V - Project Plan (including

| put falls;...)

| Explain Why to Proceed -------

Figure 2-1: Initia Project Planning

|dentify the Need for an Expert System

Before an expert system can be devel oped, the need has to be established and the problem to be
addressed must be clearly identified and defined. It is strongly recommended thet this be donein a
structured study to include the following issues (Wentworth 1989):



The problem/need to be addressed and the system benefits.
Organizationd risk factors.

Technicd risk factors.

User risk factors.

NOTE: Theterm risk factorsis used in deference to the old adage "if it can go wrong, it will
gowrong." Therisk factors represent areas where it "will go wrong" if thereis any deficiency
in planning and common sense.

Once a suitable problem domain has been defined for the expert system, the next task isto narrow the
scope of the development effort by clearly defining the set of problems that the system will be expected
to solve. The narrower the scope, the better are the chances that the expert system can be successfully
built. However, if the scope istoo narrow, the gpplication becomestrivid. Judgment must be used in
establishing the scope of the system as deterministic methods are not available. In generd, it is better
to err on the side of too narrow a scope rather than on too broad a scope. If the scope ultimately turns
out to be too narrow, it may be relatively easy to broaden the scope by adding more knowledge to the
knowledge base. However, if the development tool istoo limited, it will be impossble to broaden the
scope of the expert system by expanding the knowledge base. This highlights the importance of
selecting the proper development tool to fit the particular problem.

Prior to embarking upon an expert system devel opment effort, the expected benefits of such an effort
must be clearly defined. There are two categories of benefits that are typically cited as reasons for
deveoping an expert system. One category conssts of concrete, quantifiable reasons such as savings
of time and money, utility asatraining tool, etc. The other category of benefits consists of tangible but
not quantifiable reasons. Specifically, the process of developing an expert system will formaize and
document the knowledge in a given problem domain, or combine and formalize the expertise from
many expertsin agiven domain. Thiswill result in expanded knowledge and better problem solving
techniques in the domain, and provide a mechanism for giving this knowledge wide distribution to the
users.

Under the heading of the problem/need to be addressed and system benefits, the following should be
accomplished:



The problem or need must be clearly identified and documented.

The probahility of the expert system resolving this problem or need must be described and
quantified.

The application or the output and the use of the output must be clearly defined .

If standardization of resultsis desirable, the degree to which the expert system will improve
Standardization must be estimated.

The use of the expert system to improve conditions by improving quality of results must be
estimated.

The expected utility of the expert system as atraining tool must be described.
End user involvement for the duration of the development process must be assured.
Time and money savings based on the projected use of the expert system must be estimated.

Under organizational risk factors, suggested requirements and considerations are:

There must be a dedicated and influential advocate who wants the system to be a success.

There must be management support for the financial support, staff and time required to build the
expert system.

Management must have redlistic expectations regarding the difficulty in developing the expert
system.

Management must have redistic expectations regarding the performance of the developed system.

The results of the expert system must be applied without excessive management approvas being
required.

Once a problem domain has been identified and the initial effort a narrowing the scope of the expert
system gpplication completed, the expert(s) whose expertise will be modeled must be selected.

Thetwo main criteriathat should be used to identify the expert(s) are:

1. The candidate(s) must be an expert in solving problems in the problem domain of interest and must
be recognized as such by the potentia user community. The need for the candidate to be an expert
in the fidd is essentid for the development of the expert syssem. The need for the expert to be
recognized as such by the potential user community is primarily useful in selling the potential users
on the viability of the given system as a useful problem solving tool for them.

2. The expet(s) must be dedicated to the successful development, testing, evaluation, and
implementation of the system and be available and willing to spend the time (perhaps months) that
will be required to accomplish this. The failure to identify such a person or persons and obtain a
firm commitment means that the development project should not be undertaken.

Other useful characterigtics for the domain expert(s) to have include the ability to communicate
effectively, have an orderly mind, patience and the willingness to teach.

10



In evaluating technical risk factors, the following should be included:
There must be recognized expertsin the field dong with genera agreement among these experts
on the knowledge required to solve the problem the expert system is being devel oped to address.

The development team must be identified and arrangements made to assure their dedication to the
development and follow-up processes. The availability and persona commitment of al team
members must be assured.

The availability of amanua or automated procedure to be used as amode for the devel opment of
the expert system should be considered.

The required performance of the expert system must be defined (in terms of finding the best
solution as compared to senior experts). Unredlistic expectations must be avoided.

Ambiguity in specifications must be avoided, or if ambiguity does exigt, the specifications must be
modified to avoid it.
The scope and range of problems to be addressed by the expert system must be clearly identified.
Interaction with externa programs to run algorithmic routines or for data entry, etc., must be
identified.
User risk factors must be considered and resolved in the initia planning phases of the expert system
development. If representative end users are not involved in the planning and devel opment stages, the
system probably will not be accepted by the user community. Issuesinclude:
The end users must want the system and have a vested interest in its success.
The computer proficiency and other skills and interests of the end users must be accommodated.
The environment or conditions under which the system will be operated must be accounted for.

The Development Team

There are four categories of participantsinvolved in the expert system building process. These arethe
advocate who champions the building of the expert system, the end users of the expert system, the
domain expert(s) whose problem-solving expertise is to be modeled, and the knowledge engineer who
actualy buildsthe system. Although in the process of building a given expert system the same person
may at various stages of development take on different roles, it isimportant to recognize that these
rolesare distinct.

The role of the advocate who champions the development of the expert system isto:
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|dentify the need for the system.

Define the problem domain.

Identify the intended user community.

Define the expected benefits that will accrue to the intended audience using the expert system.
Identify the expert(s) whose expertise will be modeled.

Choose the knowledge engineer who will develop the system.

Maintain (or plan for the maintenance of) the finished product.

Plan and chaperon the entire development process.

The end user is critical in the development of an expert system and must be involved in the entire
development process. The end user provides:.

Definition of the skill level of the user community.

Information on how problems are addressed in the field versus the prescribed solutions.

Advice on how the system must function (interact with the user) to be accepted by the intended
users.

A cadre of supportersto test and promote the expert system once it is completed.

The domain expert has adud role in the expert system devel opment process. Firg, the expert's
problem-solving ability serves asthe modd for the expert system. Second, the expert must assist in
quality control on the project and make certain that the expert system faithfully represents a useful
portion of the expert's knowledge. In essence, the expert must take some responsibility for ensuring
that the expert system faithfully models his expertise. The expert's mgor task in fulfilling this
respongbility isto assist in the design of acomprehensive set of test problems for usein verifying that
the expert system actualy works.

The knowledge engineer has the task of developing afaithful modd of the expert's problem solving
ability in the domain of interest. Other tasks which the knowledge engineer must perform are:
Implement the modd of the expert's knowledge.
Ensure that the implementation is as transparent as possible.
Document the expert system.
Test the expert system.
Oneindividua may perform more than one of these functions; however, the end users and their tasks

should remain autonomous. If the roles of the domain expert and the knowledge engineer are
combined, a second domain expert should review and confirm the technica findings.

The Test /Evaluation Team

The same four categories of participants involved in expert system verification, validation, and
evauation are involved in the building of the system. However, their roles have changed in some
aspects. These are the advocates who champion the building of the expert system, the end users of the
expert system, the domain expert(s) whose problem-solving expertise is to be modeled, and the
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knowledge engineer who actually builds the syslem. Although in the process of building a given expert
system the same person may at various stages of development take on different roles, it isimportant to
recognize that these roles are distinct.

Therole of the advocate who champions the expert syslem is to:

Identify the need for system robustness and usefulness.

Define the problem domain for testing.

Identify the intended user community.

Define the expected benefits that will accrue to the testers of the expert system.

Identify the sites where testing will be conducted.
The end user is critica and must be involved in the entire process from development through
implementation. The end user provides:

Access to acadre of supportersto test and promote the expert system.

Information on how problems are addressed in the field versus the prescribed solutions and
knowledge on how to "fix" problems on thefly.

Advice on how the systerm must function, i.e. interact with the user, to be accepted by the intended
users.

The domain expert has adud role in the expert system devel opment process. Firg, the expert's
problem-solving ability serves asthe model for the expert system. Second, the expert must assist in
quality control on the project and make certain that the expert system faithfully represents a useful
portion of the expert's knowledge. In essence, the expert must take some responsibility for ensuring
that the system faithfully models his expertise. The expert's mgor task in fulfilling this responsbility is
to assist in the design of acomprehensive set of test problems for use in verifying that the system
actualy works.

The knowledge engineer has the task of developing afaithful modd of the expert's problem solving
ability inthe domain of interest. Other tasks which the knowledge engineer must perform are:

Implement the model of the expert's knowledge.
Ensure that the implementation is as transparent as possible.
Document the expert system.
Test the expert system.
Oneindividua may perform more than one of these functions; however, the function of the end users

should remain autonomous. If the roles of the domain expert and the knowledge engineer are
combined, a second domain expert should review and confirm the technica findings.

Systems Development Milestones

In developing expert systems a series of development milestones should be used to measure progress
and to provide a series of “go/no-go” decision points. These milestones should each represent stages
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of development that would provide an improvement in the state-of-the-practice and pointswhere a
forma decision by top management to proceed with the development should be made. Itisthe
responsibility of the development advocate to provide criteriafor these decisons and to gain
management approva of these forma criteria during the planning of the expert systems development.

Asan example of this philosophy the following example is provided:

Situation:
A regulatory unit has 2500 paragraphs of regulation to manage. There are about 100 queries per
month to these regulations and by mandate responses must be provided in five working days. Files of
previous responses are scattered between file cabinets, cardboard boxes and the memory of five
remaining experts (al approaching retirement) who know the purpose and the history of the regulatios.

Solutions.
Build an expert system to capture the knowledge of the five remaining experts and to manage the
responses to inquiries.

AnalyssRecommendations

The solution souds wonderful and could even be made to work, but competent and thorough planning

and management are required. 1t should never be assumed that an expert system isthe logica answer;

an expert system isonly atool and should be evauated adong with other possible approaches. The

system shuld be constructed in the following stages:

Organize the exiding files

Develop a system to categorize inquiries

|dentify typical responsesto each category of inquiries

Devedop a scanning system to automate the reading of inquiries

Develp apreiminary response | etter based on steps 2,3 and 4

Perform VV & E on the developed system

Note that at the end of step 6 afully developed and tested system will bein place. Also theterm
“expert system” was not used dthough in dl likelihood an expert system was the abvioustool to usein

seps 2,34 and 5. Each step represented a clear improvement in the state-of -the-practice and for each

step logica “go/no-go” criteria could be prepared during the planning stage of the project.

OUAWNE

Figure 2.1.1: System Development Milestones Example

14



proble potentid!_Sol'n,

Start

« The Problem is the « 1-800 #s. * A system that is relatively
lack of readily « Investment books. cheapjtojbuild. ’

available investment .. > U2 UFIDE i (FEEiE]

- s— ‘ES users is very high.

« Unrealistic management e There are no recog_nized experts that « Do the users have a vested
expectation, i.e., Nobody can predict a good st interest in the E.S. (do they
know how to predict strategy in today’s economy. want it)?
investment strategies so « Required level of performance: — NO*
build an E.S. to do that. — No risks for loss of life. YES*

« Difficulty to build the system:
talk to an investment expert
to evaluate & scope out the
difficulty in building the E.S.

— The system is not automatic; the
user can decide not to follow the
advice.

~The RLF doesn't have to be very
high.

« Do they use computers?

*This is a good example of why not to go ahead with the system or explaining why to proceed in spite of the big risk.
**Good reasons to proceed.

Figure 2.1.2: KB1 Initid Project Planning

15



16



3. Developing a Verifiable System

This chapter delineates how VV & E should be incorporated into the expert system lifecycle. Although
some ideas may be used for revisng and/or reengineering existing systems, this chapter isaimed mainly
a designing new systems and ensuring that enough V'V & E operations are done during the lifecycle so
that these systems are verifiable. Included in this process are decisions that should be made during
system specification and verification/vaidation during stepwise development of an expert system.

Introduction

The proposed lifecycle for the development of expert systemsis acompilation of concepts taken from
many sourcesincluding lifecycle, cleanroom, ect. The compiled system was organized and enhanced
based on the experience of its developers to generate abasis for the development of “verifiable’
gystems. Even though the system alows for some flexibility in the degree of application of each of the
system’s components, the general outline has to be followed rigoroudy in order to achieve the
objective outlined above.

The Concept: Figure 3.1. outlines the general concept for the development of a verifiable system. It
includes the following stages.

Specification: Thisstepisindigpensablein the VV&E process.

Stepwise Development Process:  This is one of the methods for the development process, other
software development methods can be used as long as they include enough structure and verification
steps.

Design (1): Start by designing the main parts of the expert system.
Veify (1): Veify that the design complies with the specification.
Implement (1): Implement (code) the first increment.

Veify (1): Veify that the implemented code complies with the design.

Design - Verify - Implement - Verify (2 to n): Loop through the entire process for the 2nd,
3rd, ... nth leve until the entire system is complete.
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Specification
The god of this stage isto develop the system’ s pecification.

input: software specific customer requirements.
output: software functiona and performance requirements.

The Importance of Specifications

Specifications are important for VV&E. Asnoted in the introduction, verification determinesif a
system meetsits specifications, thisis meaningless if there are no specifications. Validation determines
if asystem does what is needed; thisis only possibleif it has been decided what a system is supposed to
do. Theresults of these decisons are specifications.

At the specification stage the emphasisis on producing a clear identification of:

What isto be produced?
When to produce it?
What are the resources required?

Theissueisto find atrade-off between the requirements specification (client) and the resources (time
and money). The use of forma gpproaches (forma notation i.e,, the Structured Andysis[SA; De
Marco 1978], the Software Requirements Engineering M ethodology [SREM; Alford 1978], the
Structured Analysis and Design Technique [SADT; atrademark of SofTech],) proved to be very useful
inthis process. Thisisespecialy important to the V&V task because of the clarification provided by
the use of these methods.

Functiona Specification (FS): Specification of functions to be performed by the system and the
congraints within which it must work.

Acceptance Test Specification: Test definition:
Who will perform the test(s)?
When (at what point)?
How do we insure that the system behaves according to the FS ?
Include V&V Techniquesto be used and when (at which time).

In addition to the above mentioned items, the following items should also be addressed:
A clear definition of the population of problemsthe expert system is supposed to solve.
A provison of test and development samples.
Therequired levd of performance.
A clear definition of what constitutes a correct problem solution verification:
Isit possible to collect inputs that could possibly solve the problem?

Isit possible to compute the proposed output from the input validation?
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Can the experts certify that the specifications, if properly implemented, would solve the evduation
problem?

Can expertsjudge that the system is worth the probable cost?
Can experts judge that the system would be useful in practice?
Isit possible to build a system that could be integrated with other components as necessary?

The General Form of Specifications

For the forma proof techniques presented in the following chapters, it is useful to have a genera
representation of a specification. Mogt specifications are based on the following form:

For some subset S of the input space of an expert system, and
fordl XinS
the output of the system satisfies some proposition P.

Defining Specifications

It is particularly important to define specifications for the critical cases the expert system may
encounter. A critical casefor an expert sysem isaset or range of input data on which falure of the
expert system to perform correctly causes an unacceptable, perhaps catastrophic, failure of the system
of which the expert system isapart.

There are severa stepsin defining and verifying specifications for an expert system:

Gather informa requirements from experts, with particular attention to defining the critical cases.
Obtain expert certification of the specifications.
Vadlidate informa descriptions of the specifications with experts.

Vadlidate the trandation of informa specifications into the formal notation used in the knowledge
base.

Vdlidate the forma statement of the requirements using symbolic evauation.

Each step is detailed in a section below, with particular attention to critical cases.

Gather Informal Descriptions of Specifications

Thefirst step in verifying specificationsis to gather a complete set of requirements. Only the domain
expert(s) can providethislist. Idedly, during the origina knowledge acquisition phase for the expert
system, the knowledge engineer gathered, documented, and validated the critica cases. If the
informally stated requirements are not available, however, gathering them isthe first necessary step in
verifying the correctness of an expert system.

Typicaly, to gather the critical cases, the knowledge engineer should ask the domain expert(s) to list
critical cases, and to keep a careful record of them. Aswith most knowledge acquisition tasks, it is
important to ask for the following information:
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Generd principles, eg. "What are the critica performance requirements for this expert system?”

Specific projects, and the critical performance requirements found in those projects. To get this
information, the knowledge engineer should ask the expert(s) to tell him about their projects and
experiences that are within the scope of the knowledge base. The purpose of thisis that by
reviewing the specific projects the expert’s memory will be spur. This process will help the
engineer to decide what the critical casesredly are.

In gathering a set of critical cases, it isimportant to let the domain experts describe critical casesin
their own words and notation, not in the notation of the expert system. Thisis because the expert
system may have missed a critical variable that may be needed to recognize a critical case. If the
knowledge engineer asks the expert to verify knowledge base gobbledygook, the expert may become
too digtracted to think of acritical case not described with the incomplete set of variables used in the
incomplete knowledge base.

Obtain Expert Certification of the Specifications

It isimportant that the knowledge engineer impel the expert(s) to certify the specifications, especialy
those concerning the critical cases. Thisisavita step in the process because the expert system will be
built to meet and tested against the specifications. If the specifications are in error, the expert system
will dmost surely fail to perform properly.

In order to obtain meaningful certification of the specifications, the knowledge engineer must make
sure that the expert focuses on a careful review of the specifications. Among the waysto obtain this
focus are:

Have a group of experts reach consensus on the specifications, with the knowledge engineer
functioning as amoderator. In thisrole, the engineer will:

Be familiar with the ongoing discussion, and in addition, will be in a podtion to solicit
important issues that must be resolved.

Ensure that the experts address those issues and reach an agreement.
Have the expert(s) Sgn off on the specifications.

Validating Informal Descriptions of Soecifications

For systems where correct performanceis criticad, the next step in validating specifications of the
expert system isto vaidate the informa descriptions of critical cases. The basic method for validation
isthat of cultural consensus, described in the chapter, "Validating Expert Knowledge.” In this method,
experts, ideally those who have not provided the specifications, are used to validate the correctness of
those specifications.

There are two questions that should be asked concerning the informal list of critical casesto validate: is
the set of critical cases complete, and are the critical cases correct? To validate completeness, the
knowledge engineer should conduct interviews with experts who have not contributed to the critica
caselig. Thisinterview issimilar to the one used to gather the list of critical cases, with one additiona
gep: at the end of the interview, ask the expert to certify not just the critical cases the expert

proposed, but the entire list of critical cases gathered so far, including those that were added during the
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interview. After additiona experts no longer provide new critical cases, the entire list gathered has
been validated to a confidence level depending on the number of experts who certify thelist. Chapter
9, "Vdidating Underlying Knowledge', discusses these confidence levelsin more detall.

Validating the Trandation of Informal Descriptions

To vaidate the critical cases, the informal descriptions must be trandated into forma statementsin the
language of the knowledge base. The god of thistrandation isto produce statements of the form:

if HLand H2 ... and Hn then C1 and C2...and Cn.

The H’ s should be gtated in terms of input variables of the expert system, and the C’ s should be
possible conclusions of the expert system.

The trandation into a knowledge base language is a process that can introduce errors. For example,
for Knowledge Base 1 acritica case in the informal language of an expert might be, "If the client
doesn't have alot of money, he/she should first build a savings account.” The closest that one can
come to expressing thisin the language of Knowledge Base 1 is:

If "Discretionary income exists' = no
then investment = "bank account".
A financid planner would probably consider "Discretionary income exists' an inadequate trandation of

"the client doesn't have alot of money"; Knowledge Base 1 does not even ask about existing savings or
most other assets.

Asthis exampleillugtrates, the trandation of expert knowledge into the forma knowledge language of
an expert system is one of the tasks where errors can creep into the expert system. To have atruly
vaidated expert system, the trandation hasto be validated. Although thisisrarely done, items can be
created for validation as follows:

|s <expert's statement of a critical case>

equivaent to <the same critical case in the knowledge language>
These itemsform the basisfor a cultural consensus test for a set of knowledge engineers (see chapter 9
"Vadlidating Underlying Knowledge'). When asking knowledge engineersto vaidate the trandation of
critical cases, it isimportant to:

Use knowledge engineers who have not built the knowledge base.

Give the validating knowledge engineers the opportunity to familiarize themsaves with the

knowledge language before examining the individua items.

In trandating the informa requirements into forma knowledge base statements, there are some typica
kinds of errors, as discussed below:
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Fdse negativesin the input variables: One problem in knowledge trandation results from the fact
that a symptom is often used in aknowledge base to stand for an underlying condition; in the above
example, for example, "no discretionary income" stands for "has no money.” However, few
observations are 100 percent reliable. 1f asingle symptom is used to test for a condition in a
knowledge base, afase negative of that symptom will produce an error in what the expert system
does.

The solution to the false negative problem is to separate symptoms and underlying conditions in the
knowledge base. If C isa condition, the knowledge base should contain arule of the form:

if SLorS2or..SnthenC (Rule C).

Where Sl through Sn are a set of symptoms such that the probability of fase negativesin dl the Ssis
less than some agreed-on threshold. Outsde of Rule C, and smilar condition-inferring rules, the S's
should not appear when acondition (i.e, C) isintended. Therefore, every occurrence of an S outsde
of acondition-inferring rule should be validated by expert(s).

In the case where a single symptom has such low false negatives that it identifies C by itself below the
acceptable error threshold, it is unnecessary to separate the symptom and condition in the knowledge
base:

Missng input variables: An expert learns to observe many symptoms of possible problems. An
expert system may use only asmal number of variadbles. Whether the smal number of varidblesis
adequate is a matter that experts must validate. It isimportant to ask experts what data they gather
inlooking at problems covered by the knowledge base. If the expert looks at more than the expert
system, for example variable X, then:

Can the expert get long without <variable X>
isaknowledge item that should be validated (see chapter 9).
Validation of Formalized Requirements
At this point, the critical cases have been transformed into a set of statements of the form:
if HLand H2 and ... and Hn then C1 and ... Cm(name: f1).

Formal verification methods for specificationsin thisform are discussed in the chapters on knowledge
modeing and verification techniques for smal systems.

Figure 3.2 outlines the steps to be considered at the specification stage and figure 3.2.1 shows their
implementation to knowledge base 1.

Other Issues to be addressed at this stage:

23



Project Plan: Breakdown of the work; manpower figures, milestones, ect.
Quality Management Plan: Quadlity Control.
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Problem Definition:
The lack of readily available investment advice.
Deveop a system that will advise the user on investment strategies.
Population of Problems the System is supposed to solve:
Investment advice to people with lessthan $ 1 Million to invest.
Definition of Correct Problem Solution:
An investment strategy is dways suggested.
Proposed solution should be affordable
The investor is comfortable with the advise.
Required level of performance:
Asgood as 70% of the expert(s) [Define: good 70% of the time or 70% as good al the time].
The system should aways recommend an affordable investment even if it has to be a conservative
one.

Note: Knowledge Acquisition & User Involvement:

Figure 3.2.1: KB1 Specification

Step-Wise Refinement Development

At this stage, amapping of the system functions (from FS) into software components will occur and
the overall System Structure (Architecture) must be defined. The use of the following Box Structure
Methodology will help in this process.

Software Sructure

The generd software architecture should consst of
Software Components (for each software component, determine its purpose, functiondity,
interface, and data requirements).
Structure & Flow.

Box Sructure Methodology

Black Box: Externd view of the syslem. This provides a system description of the user visble
system inputs and responses. No details on the interna structure and operations are provided.

State Machine: Intermediate system view. This decomposestheinternd state structure from the
BB description of the system.

Clear Box: Interna view of the system operations on inputs and internd State data.

If the box structure methodology, is to be used, the first level/increment should consist of the overal
design taken as deep as possible (using black boxes for functions and sub-systems). At every
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subsequent increment the design should be taken deeper, two to three level down, until dl the boxes
are replaced by their respective functions/'subsystems.

Design Refinement
The Top Leve Desgn:

Given the specifications for the system as a whole, a top level software module is designed with the
following properties:

The design for the top level software is written in a language, which may be but is usudly not a
compilable programming language. Any language which has a precisely enough defined syntax and
semantics to unambiguoudy define what the design does when executed, and to carry out required
correctness proofs of the software can be used. Languages tha fit these requirements are called
design languages. The process of rendering axiomized software into a design language is called
designing the software.

The software design can be trandated from its existing language into a compilable programming
language. Techniques for doing this trandation for standard knowledge models will be presented
later. The software design can be proved correct. In particular, the software can be proved to be
complete, congstent and to satisfy its specifications, under the assumption that any other functions
or other software modules used within the current object of proof satisfy some written, precise,
mathematica specifications.

Refining the Design:

Once the disgn process has been started, a modification of the familiar successive refinement lifecycle
adds detail to the design. Detail is added in two ways:.

Software modules which have been axiomized but not designed can be designed.

Software that has been designed can be trandated into a language that is closer to, or is, a
compilable programming language.

Verifying the Desgn:

A design is verified when it has been proved that the desgned module is complete, consistent and
satisfied its specifications.
A module is complete iff for dl pointsin its input space, some vaues of the outputs and behaviors
required to ingtantiate the specifications are computed.

A module is condgtent iff it is possble, both mathematically and under the congtraints imposed by
knowledge in the area of application, for al the output values and behaviors to be true at the same
time.
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A module satisfies its specifications iff its gpecifications are true when ingtantiated with any input
vaues and any outputs or behaviors produced from those inputs.

Completing the Design:

A design is complete when al software modules gppearing in the design have been axiomized, designed
and verified.

From Specifications:
1. AnInvestment strategy is aways suggested:
List of possible investments strategy for KB1:
Stocks.
Saving Accounts.
Do Nothing (Although thisis agood choice for many instances, it is not considered for the example).
Note: The list of output might be incomplete at this stage (i.e., may discover other possible strategies
down theline).
Define the specifications in terms of these newly defined list of output.
2. Proposed solution should be affordable:
When is stock affordable?
When is Saving Account affordable?
| nteraction with the expert(s)
Depending on the complex nature of the questions to be answered, we may find out that other things
might be needed:
I nteraction with data bases.
Algorithmic routines.
Sub Expert systems.
For KB1.
The expert determined that stocks are affordable if “ Discretionary Income’ exists.
We have to define “Discretionary Income” in a measurable manner.
From the interaction with the expert, we introduce the concept that in order to have “DI”, the investor
has to have:
Some savings (> $ 3000.).
A luxury item (Boat/ Luxury Car).
n.b.: 1. Keep careful records of interaction with the expert(s).
2. One of the products of these steps are expert(s) verifiable statements about the knowledge
domain.
i.e, Socksare affordableif thereis savingsand a luxury item.
These will be used for carrying out formal proof procedures. In a high risks situation (see table 3.1)
these statements should be verified by enough experts to get the required level of confidence (see
chapter 9).
We have preliminary design information that conssts of:
1. Anexpert sub-system to determine affordability.
2. Anexpert sub-system for risk tolerance.
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3. Anexpert sub-system which makes an investment category decisonusing 1 & 2.

n.b.: Thisisvery useful for designing awel structured system.

Refer to chapter 7, “Knowledge Modeling”, and pick a knowledge modd that fits the preliminary
design information.

Figure 3.2.2: KB1 Desgn

Implementation

In the implementation step, a software module is trandated from its current design language into a
compilable language. The source code resulting from that trandation must be verified, i.e. shown to be
complete, consstent and to satisfy its specifications.

Implementation is the last step in a series of design and trandation steps that turn an initial high level
gpecification for the system as awhole into compilable code. The stepwise refinement process that
produces the code from the initial specification uses the following refinement operations:

Design of amodule that has been specified but not yet designed.
Specification of amodule that is used in adesigned module but has not yet been specified.

Trandation of amodule from one design language to another language, usualy one that is more
detailed and closer to a compilable language.

At the Implementation stage, the main objective isthe creation of a complete executable system,
including software to carry out al processes specified in clear or black boxes, according to constraints
on those parts of the system. The system is comprised of executable rules, objects, procedures, etc.,
that:

Satisfy requirements of the system asawhole.

Are executable functions that are equivaent to abstract functions specified in the design.
For example, the desgn may specify a function that determines that the user is rich. The
implementation may check the bank account, kind of car owned, etc. However, it may not catch
certain rich people because it does not check art owned. In this case, the implementation fails to carry
out the abstract function required of it. In generd, the computer bases a conclusion on less observed

data than an expert, and smplifies the inference an expert makes to one that is just based on the smdll
set of data the computer looks .

The implementation stage should consist of the following steps:
1. Determinethe high level structure of the system to be implemented.
2. Define communication between subsystems Implementation.

3. Provide adetailed definition of subsystems.
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4. Sdect the implementation tool.

5. Execute the implementation in the tool.

Constraints on Design and Implementation
The following congtraints gpply to the operationsin the stepwise refinement process.

Specification of a module must include dl properties that are used in any existing verifications of other
modules.

No module can be designed before it is specified.
Designs must be proved to satisfy their specifications.

Trandations must preserve specified properties of the source module (being trandated) in the
destination module (the result of the trandation).

Correctness Verification

Design vs. Specification

The overal result of thisisaproof that any system that satisfies dl the design documentsiis correct
(i.e, complete, consstent, stable, satisfies requirements imposed by subject) provided that the parts not
yet designed or implemented have properties as required by clear box theorems and the models of
knowledge, or specified by the expert.

Codevs. Design

The equivaence between requirements and implementation must be proven. Previous results together
with proof of equivalence of design and implementation may be used. This may take the form of a
cleanroom-type layered correctness proof in which al boxes are clear and implemented, with the top
part congtituting the previous proof of the equivaence of requirements and design.

Depending on the complexity of the problem and the consequence of failure, this processisto be
accomplished by the developer(s) (Levd 1), the developer(s) and two members of the organization
(Leve 1), or aseparate verification team (level 111). Table 3.1 isto be used asaguidein determining
the level of the project. figure 4.3 shows the process and figure 3.3.1 is the implementation to
knowledge base 1.

Table3.1: Levd of Effort for the Correctness Verification Stage
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Figure 3.3: Correctness Verification

Step 1 -- Determine the high level structure of the system to be implemented: From the design
stage, it was determined that the expert system consgts of 3 subsystems, discretionary income (D),



risk tolerance (RT) and type of investment (INV). The structure of the system can be expressed by the
function:

Investment = INV( DI( boat, "luxury car", "savings account"),
RT( stocks, "lottery tickets'))
This expresses the fact that the output of DI and RT are inputsto INV.

Step 2 -- Define communication between subsysems. The output of DI and RT must be
aufficiently fine-grained to distinguish cases where different investments are indicated. Since there are
only 2 investments in this example system, only 2 vaues are required as output for each of these
subsystems; use high and low for risk tolerance, and yes and no for discretionary income. At this point,
the inputs, outputs and communication between subsystems have al been defined.

Step 3 -- Detailed definition of subsystems: In this stage, the expert information collected in the
design step will be converted into precise logica statements; this process will be illustrated on the DI
Subsystem.

The condition that must be true to have discretionary incomeis:
A = (Savings > $3000) (1)
AND ("OwnBoa" =yes OR"Own Ca" =yes)
The expert information about discretionary income can be formalized as:
A IMPLIES ("discretionary income' =yes)  (2)
NOT A IMPLIES ("discretionary income' = yes) ©)]

Step 4 -- Selection of implementation tool: At this point, there is enough information to choose a
tool in which to implement the expert system. The requirements on the tool are:

Provide for communication between subsystems.
Expressrules such as (2) and (3).

Most rule-based expert system shells meet these requirements.  Although the order of information in
the knowledge base must be dightly different in forward and backward chaining implementations,
ether form of inference engine can be used to implement this knowledge base.

Step 5 -- Implementation in the tool: The rule-based-shel implementation will be written in two
geps. firs as a generic rule-based implementation, finally as an implementation in CLIPS.
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Step 5.1 -- A generic rule-based implementation: Rule-based shdlls typically alow menu, fill-in and

yes-no questions. The following questions will gather the necessary information for discretionary
income:

QUESTION TEXT TYPE
What is your savings balance? fill-in

Do you own a boat yes-no
Do you own aluxury car yes-no

The inputs and outputs can be represented inside the expert system by the following variables:

VARIABLE TYPE VALUE
savings numerica >=0

"Do you own a boat" boolean yesor no
"Do you own aluxury car" boolean yesor no
"discretionary income' enumerated values high or low

Now put the knowledge in statements (2) and (3) into the rule form of rule-based shells. Rule based
shells encode information in the following form:

* Rules are of the form:
|F <conditions> then <inferences> and <actions>
» <conditions> are built from smple requirements with the logical operations AND, OR and NOT.

* Many of the smple requirements can be written in the forms such as VARIABLE = VALUE, or
more generdly:

VARIABLE REL VALUE, where REL isone of therelations
= > < >=. <=

* |nferences can aso be written in the form:
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VARIABLE =VALUE, i.e VARIABLE isset equa to VALUE.
Actions are dependent on particular shdlls, and will be deferred at thistime.
Using the above notation, (2) can be written as.
IF (Savings > $3000) (4)
AND ("Doyouown aboat" =yes
OR "Do you own aluxury car = yes)
THEN "Discretionary income' = yes
(3) can be put into ruleform as:
If NOT <if part of (4) THEN "Discretionary income' = no 5)

Alternatively and more usudly, arule implementing (3) iswritten in aform in which the NOT is gpplied
individualy to the smple requirements contained in the "IF" part, rather than to a complicated
expression built up from requirements. DeMorgan's Lawsin mathematical logic:

NOT (A ORB) =NOT A AND NOT B (6)
NOT (A AND B) =NOT A ORNOT B
Using (6) repeatedly transforms (5) to:
IF (NOT Savings > $3000) (7
OR
(NOT "Do you own aboat" = yes
AND NOT "Do you own aluxury ca” = yes)
THEN "Discretionary income' = no
Simplifying the smple conditions using the following relations,
(NOT Savings > $3000) = (Savings <= $3000) (8)
(NOT "Do you own aboat" = yes)
= ("Do you own aboat" = no)

(NOT "Do you own aluxury car" = yes)




= ("Do you own aluxury car" = no)
Substituting (8) into (7) gives.
IF (Savings <= $3000) (9)
OR ("Do you own aboat" = no
AND "Do you own aluxury ca™ = no)
THEN "Discretionary income' = no

Figure 51 shows an expet sysem in a generic rule-based shell language that implements the
discretionary income, risk tolerance and investment subsystems. The result is a smal knowledge base
(caled Knowledge Base 1) that implements the investment expert system. [Note: Knowledge Base 1
leaves out the savings requirement, to further smplify the example when it is used to illustrate
verification and validation.]

Step 5.2 -- Implementation in CLIPS

Once a generic knowledge base has been written, it must be trandated into the language of a particular
shdl. Shown bedow is an implementation of the generic knowledge base in CLIPS. The CLIPS is
farly closeto the generic rule-based KB. The main differences are:

rule syntax: Rulesin CLIPS have the following syntax:
(defrule <RULE NAME> <COMMENT>

<LIST OF CONDITIONS>

=

<LIST OF ACTIONS AND INFERENCES>
)

implementation of the AND operation: The AND operation can be implemented in two ways.

A ligt of the conjunctsin the AND.
An explicit AND operétion.

These dternative ways of writing AND are illustrated by the following two equivaent rules.
(defrulerulel "stock™

(risk_tolerance high)

(discretionary_income TRUE)

=

(8ssert (investment stocks))

(printout t "We recommend stocks." crlf)
)

(defrulerulel "stock™

(and (risk_tolerance high) (discretionary_income TRUE))
=

(assart (investment stocks))

(printout t "We recommend stocks.” crlf)




)
implementation of the OR operation: The OR operation can be implemented by an explicit OR
operation, i.e.,

(defrule rule3c "high risk tolerance”

(or (now_own_stocks TRUE )(lottery_tickets TRUE))

=>

(assert(risk_tolerance high))

)

Equivaently, one can write a separate rule for each digunct in the OR:

(defrulerule3cl "highrisk tolerance 1"

(now_own_stocks TRUE)

=>

(assert(risk_tolerance high))

)
(defrulerule3c2 "high risk tolerance 2"

(lottery _tickets TRUE )

=>

(assert(risk_tolerance high))

)

Hereisan actud CLIPS implementation. Thisimplementation is afairly straightforward trandation of
the generic KB1. More sophisticated implementations of KB1 would structure the knowledge base so
that when sufficient information for a concluson had occurred, the user would be spared extra
guestions.

; KB1in CLIPS, ademo rule based system

; Note: In the following knowledge base,
; we will use certain user interface functions
: which can be defined in CLIPS:

; yes-or-no-p asks ayes-no question
; ask-parm asks afill-in question
; ask-parm asks a menu question

; To run this CLIPS knowledge base, you need these functions
; which are not shown here.

; INVESTMENT TYPE SUBSY STEM

Rule 1: If "Risk tolerance" = high
AND "Discretionary income exists' = yes
then investment = stocks.

(defrulerulel "stock"
(risk_tolerance high)
(discretionary_income TRUE)



__________________________________________________________________________________________________________________|
=>
(assart (investment stocks))
(printout t "We recommend stocks." crlf)

)

Rule 2: If "Risk tolerance" = low
OR "Discretionary income exists' = no
then investment = savings account.

(defrule rule2a "savings account 1"

(risk_tolerance low)

=>

(8ssert (investment "savings account™))

(printout t "We recommend a savings account.” crlf) )

(defrule rule2b "savings account 2"
(discretionary_income FALSE)

=>

(8ssert (investment "savings account™))

(printout t "We recommend a savings account.” crlf) )

; DISCRETIONARY INCOME SUBSY STEM

Rule5: If
( Savings > $3000)
AND ("Do you own aboat" =yes
OR "Do you own aluxury car" = yes)
then "Discretionary income exists' = yes.

; First we will gather the information

(defrule rulesa "boat"

(not (has_boat ?))

=>

(bind ?boat ( yes-or-no-p "Do you own aboat?" ))
(assert (has_boat ?boat ))

)

(defrule rulesb “luxury car”

(not (has_lux_car ?))

=>

(bind Ac ( yes-or-no-p "Do you own aluxury car?" ))
(assert (has_lux_car Ac ))

)

'(defrule rulebc "savings balance"

(not (savings_baance ?))

=>

(bind ?sb ( ask-parm "What is your savings balance?" ))
(assert (savings _balance 7ab))

)

; Now we will use the information determining discretionary income
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(defrule rulebd "has discretionary income'”
(savings_bdance 7db)
(test( > 2sb 3000))
(or (has_lux_car TRUE ) (has_boat TRUE))
=>
(assert (discretionary_income TRUE))
)
Rule 6: If Savings <= $3000
OR
("Do you own aboat" = no
AND "Do you own aluxury car" = no)
then "Discretionary income exists' = no.

(defrule rule6 "has no discretionary income”
(savings_baance 75b)

(test( <= 7sb 3000))

(and (has_lux_car FALSE ) (has_boa FALSE))
=>

(assert (discretionary_income FALSE))

)

; RISK TOLERANCE SUBSY STEM

Rule 3: If "Do you buy lottery tickets' = yes
OR "Do you currently own stocks' = yes
then "Risk tolerance" = high.

(defrule rule3a "lottery tickets'

(not (lottery_tickets ?))

=>

(bind 2Lt ( yes-or-no-p "Do you purchase lottery tickets ?"))
(st (lottery_tickets 2Lt )

)

(defrule rule3b "currently own stocks'

(not (now_own_stocks ?))

=>

(bind ?s ( yes-or-no-p "Do you currently own stocks ?*))
(assert (now_own_stocks 25))

)

(defrule rule3c "high risk tolerance”
(or (now_own_stocks TRUE )(lottery_tickets TRUE ))
=>
(Bssert(risk_tolerance high))
)
Rule 4: If "Do you buy lottery tickets' = no
AND "Do you currently own stocks' = no
then "Risk tolerance” = low.
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(defrule rule4 "low risk tolerance’

(and (now_own_stocks FAL SE)(lottery_tickets FAL SE))
=>

(assert(risk_tolerance low ))

)

Figure 3.3.1: KB1 Implementation



4. The Basic Proof M ethod

This chapter provides an overview of the basic method for formal proofs:

Partition larger systemsinto smal systems.
Prove correctness on smal systems by non-recursve means.
Prove that the correctness of dl these subsystemsimplies the correctness of the entire system.

Introduction

An expert system is correct when it is complete, consstent, and satisfies the requirements that express
expert knowledge about how the system should behave.

For real-world knowledge bases containing hundreds of rules, however, these aspects of correctness
are hard to establish. There may be millions of distinct computationa paths through an expert system,
and each must be dedlt with through testing or formal proof to establish correctness.

To reduce the Size of the tests and proofs, one useful gpproach for some knowledge basesisto
partition them into two or more interrelated knowledge bases. In thisway the VV & E problem can be
minimized.

Overview of Proofs Using Partitions

The basic method of proving each of these aspects of correctnessis basicaly the same. If the system is
amall, atechnique designed for proving correctness of smal systems should be used. If the system is
large, atechnique for partitioning the expert system must be applied and the required conditions for
applying the partition to the system as awhole should be proven. In addition the correctness of any
subsystemn required by the partition must be ensured. Once this has been accomplished this basic proof
method should be applied recursively to the subexpert systems.

To carry out a partitioning of an expert system, one generaly requires expert knowledge to define the
top level problem-solving strategy of the expert system. In Chapter 7, "Knowledge Modding”, a
number of knowledge representations are outlined that may be useful in formalizing the top level
structure of the knowledge base. Through knowledge acquisition with one or more expert, the top
level structure of the knowledge base should be represented in a knowledge model. The correctness of
this knowledge model should be vaidated with other experts or with standard reference materiasin the
target domain (the section in Chapter 9, on Validating the Semantic Consistency of Underlying
Knowledge Items, addresses the problem of validating expert knowledge). When the formalization of
the top level knowledge base has been so validated, the fact that the knowledge base has the vaidated
structure can, from the standpoint of aforma proof, be assumed.

Oncethetop leved structure of the knowledge base has been vaidated, to show the correctness of the
expert system, the following criteria must be accomplished:
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Show that the knowledge base and inference engine implement the top level structure.

Prove any required relationships among sub-expert systems or parts of the top level knowledge
representation.

Prove any required properties of the sub-knowledge bases.

Chapter 7, "Knowledge Modding", discusses what exactly must be proved for various knowledge
models and for various aspects of the correctness problem.

A Smple Example

To illugtrate the basic proof method, Knowledge Base 1 will be proved correct in Figure 5.1. Although
this knowledge base is smal enough to verify by inspection, the proof will be carried out in detail to
illustrate the proof method.



KnowledgeBase 1

Rule 1. If "Risk tolerance’ = high
AND "Discretionary income exists' = yes
then investment = stocks.

Rule 2: If "Risk tolerance” = low
OR "Discretionary income exists' = no
then investment = "bank account”.

Rule 3: If "Do you buy lottery tickets' = yes
OR "Do you currently own stocks' = yes
then "Risk tolerance” = high.

Rule 4: If "Do you buy lottery tickets' = no
AND "Do you currently own stocks' = no
then "Risk tolerance” = low.

Rule5: If "Do you own aboat" = yes
OR "Do you own aluxury car" = yes
then "Discretionary income exists' = yes.

Rule6: If "Do you own aboat" = no
AND "Do you own aluxury car = no

then "Discretionary income exists' = no.

Figure4.1: Knowledge Base 1
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Sep 1 -- Determine Knowledge Base Sructure

To prove the correctness of Knowledge Base 1 (KB1), the expert knowledge can determine that the
System represents a 2-step process.

1. Find the values of some important intermediate variables, such as risk tolerance and discretionary
income.

2. Usethese vauesto assgn atype of investment.

KB1 was built using this knowledge; therefore, it can be partitioned into the following pieces.

A subsystem to find risk tolerance (part of Step 1).

A subsystem to find discretionary income (part of Step 1).

A subsystem to find type of investment given thisinformation (part of Step 2).
To prove the correctness of amulti-step system, it must be proved that Step 1 satisfies the following
criteria

For each st of inputs, dl the outputs required by Step 2 are dways produced by Step 1.

For each st of inputs, dl the outputs of Step 1 are single-valued.

The correct outputs of Step 1 are assigned to each possible set of inputs.

It must also be proved for Step 2 that:

For each set of inputs and computed Step 1 outputs, Step 2 produces some output.
For each st of inputs and Step 1 outputs, dl the outputs of Step 2 are single-valued.

The correct outputs of Step 2 are assigned to each possible set of inputs and computed Step 2
outputs.

Sep 2 -- Find Knowledge Base Partitions
To find each of the three subsystems of KB1, an iterative procedure can be followed:

1. Start with the variables that are goals for the subsystem, e.g., risk tolerance for the risk tolerance
Subsystem.

2. Include al the rules that set subsystem variables in their conclusons. For the risk tolerance
subsystem, Rules 3 and 4 are included.

3. Include dl variables that appeared in rules dready in the subsystem and are not goas of another
Subsystem.

4. For therisk tolerance subsystem, include "Do you buy lottery tickets' and "Do you
currently own stocks'.
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5. Quitif dl rules setting subsystem variables are in the subsystem, or else go to Step 2. For the risk

tolerance subsystem, there are no more rulesto be added.

Figure 4.2 below shows the partitioning of KB1 using this method.
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Figure 4.2: An Example of Knowledge Base Partitioning

Sep 3 -- Completeness of Expert Systems

Completeness Step 1 -- Completeness of Subsystems

The first step in proving the completeness of the entire expert system is to prove the completeness of
each subsystem. To thisend it must be shown that for al possible inputs there is an output, i.e., the
god variables of the subsystem are set. This can be done by showing that the OR of the hypotheses of

the rulesthat assign to agoal variableistrue.

For example, the discretionary subsystem of KB1 will be shown to be complete. The discretionary

subsystem consgts of these rules:
Rule5: If "Do you own aboat" = yes
OR "Do you own aluxury ca" = yes

then "Discretionary income exists' = yes.



Rule6: If "Do you own aboat" = no
AND "Do you own aluxury car" = no
then "Discretionary income exists' = no.
Step 3.1 Thefirst step isto form the OR of the possible outputs of the system:
"Discretionary income exigs' = yes 4.1)
OR "Discretionary income exists' = no
(4.1) expresses the condition under which some conclusion is reached.

Step 3.2: For each output condition in (4.1), the user substitutes the OR of rule hypotheses for rules
that imply that condition. For example, for

"Discretionary income exigts' = yes 4.2
the only ruleinferring (4.2) isRule 5; its hypothesisis:
"Do you own aboat" = yes 4.3)
OR "Do you own aluxury ca" = yes
Sincethisisthe only rule concluding (4.2), (4.3) isthe OR of rule hypothesesimplying (4.2).

Making the subgtitution of (4.3) for (4.2) in (4.1), and asmilar subgtitution for:

"Discretionary income exists' = no 4.4
thereaultis:
("Do you own aboat" = yes (4.5)

OR "Do you own aluxury car" = yes)
OR

("Do you own aboat" = no

AND "Do you own aluxury car" = no)

Step 3.3: Continue substitutions of the OR of rule hypotheses for inferred propositions (4.5) until the
user obtains an expression where only input variables appear. In fact, (4.5) dready contains only input
variables, and no further substitutions are needed.

Step 3.4: Apply Boolean dgebrato smplify the expression from Step 3; the god isto show that the
Step 3 expression dways has the truth value TRUE.
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Letting:

A ="Do you own aboat" = yes

B ="Do you own aluxury ca" = yes
(4.5) can berewritten as.

(A orB) or (Not A and Not B) (4.6)
Simplifying thisgives:

(A or B) or (Not A and Not B)

=(A orBorNotA)and (A or B or Not B)

= true and true

=true
This means that the OR of conditions that imply some conclusionistrue.
Completeness Step 2 -- Completeness of the Entire System

The results of subsystem completeness are used to establish the completeness of the entire system. The
basic argument isto use results on subsystems to prove that successively larger subsystems are
complete. At each stage of the proof there are some subsystems known to be complete; initialy the
subsystem that concludes overdl goas of the expert system will be complete. At each stage of the
proof, a subsystem that concludes some of the input variables of the currently-proved-complete
subsystem is added to the currently complete subsystem. After anumber of steps equd to the number
of subsystems, the entire system can be shown to be complete.

When a complete subsystem that setsinput variables of the currently complete subsystem is added to
the latter, the augmented subsystem is complete. Any input to the augmented subsystem can be divided
into aset V1 of input variables for the unaugmented system and a set V2 for the newly added
subsystem. Note that some variables may be in both of these sets. Since the newly added subset is
complete, given V1, that subsystem produces output O1. However, O1 union V2 isan input for the
unaugmented system, which, because of its completeness, produces an output showing that the
augmented system is complete.

Since the number of subsystemsis finite, the process of augmentation ceases after afinite number of
geps. By mathematical induction, using asimilar argument to that of the previous paragraph, it
follows that the entire system is compl ete.

For KB, thisresult can be gpplied, or dternatively make the following specific argument: Inputsto
the system as awhole can be partitioned into inputs for the risk tolerance and the discretionary income
subsystems. Each of these is complete, and so produces arisk tolerance and discretionary income
respectively. These areinputs to the investment subsystem its only inputs. Since the investment
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subsystem is complete it produces an investment. So an output for the entire system exists for each
input, and the system as awhole is complete.

Sep 4 -- Consstency of the entire system

Thefirst step in proving the consistency of the entire expert system isto prove the consistency of each
subsystem. To do this, the user must show that for al possible inputs, the outputs are consstent, i.e.,
that the AND of the conclusions can be satisfied.

For example, if an expert system concludes "temperature > 0" and "temperature < 100", the AND of
these conclusions can be satisfied. However, if the system concludes, "temperature < 0" and
"temperature > 100", the AND of these two conclusions hasto befase. Itisclear that based on the
input that produced these two conclusions, it is not possible for dl of the system's conclusionsto be
true at the same time and thus the system producing these conclusons isinconsistent.

Congstency Step 1 -- Find the M utually Inconsstent Conclusions

Thefirst step in proving consistency isto identify those sets of mutualy inconsistent conclusions for
each of the subsystemsidentified in the "Find partitions’ step above.

Some sets of conclusions are mathematicaly inconastent. For example, if asystem describes
temperature, the set:

{"temperature < 0", "temperature > 100"}
is mathematicaly inconsstent.

However, other conclusion setsthat are not mathematically inconsistent may be inconsistent based on
domain expertise. For example, one investment advisor expert system could be designed to
recommend severd types of investments to each investor (probably not abad ideq). For such asystem,
"investment = stocks" AND "investment = bank account” are not inconsistent; stocks and bank
accounts are just two of the investments recommended for some investor. However, if the system
were designed to recommend only one investment per investor, "investment = stocks' AND
"investment = bank account” would be interpreted as a contradiction, and the system recommending
thiswould be inconsgtent.

Because some sets of conclusions are inconsistent because of domain expertise, finding al sets of
inconsstent conclusions generdly requires expert knowledge.

Notethat if there are no mutudly inconsstent conclusions in the expert system as awhole, then
congstency istrue by default, and no further consistency proof is necessary.

Consstency Step 2 -- Prove Congstency of Subsystems

If there are inconsstent conclusions in the knowledge base as awhole, then the next step in proving
congstency isto prove the subsystems consstent. This can be done by showing that no set of inputsto
asubsystem can result in any of the sets of inconsistent conclusions. For each set of incons stent
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conclusions, the user can construct, as detailed below, a Boolean expression B that represents dl the
conditions under which that set of inconsistent conclusions would be proved by the subsystem. If that
Boolean expression can be shown to be FAL SE, there are no such conditions.

Now the construction of the Boolean expression B to be proved fase will be described. Let
S={C1,..,Cn}

be a set of potentidly inconsistent conclusions for one of the subsystems.

B will be constructed by abackward chaining process, starting with
BO=C1AND .. AND Cn

Let Ci beone of theCs. For al rulesthat conclude Ci, congtruct the OR of these rulesinitial
conditions. Then substitute the resulting expression into BO.

Continue these substitutions until an expression results that has only the inputs to the expert subsystem.
For each atomic Boolean expression A that isthe conclusion of arule in the subsystem, substitute the
OR of theruleif parts of rulesthat conclude A. After at most afinite number of such substitutions, the
user obtains an expression that states when dl the C’'swould be true in terms of the input variables of
the subsystem.

For the risk subsystem, the only inconsstent set of rule conclusonsis:
S={ "Risk tolerance" = high and "Risk tolerance" = low }

Theonly initid conditions for "Risk tolerance’ = highisfrom Rule 3:
"Do you buy lottery tickets' = yes
OR "Do you currently own stocks' = yes

and the only initid conditions for "Risk tolerance”’ = low isfrom Rule 4:
"Do you buy lottery tickets' = no

AND "Do you currently own stocks' = no

Let:
A0 = ("Do you buy lottery tickets' = yes)
Al =("Doyou currently own stocks' = yes).
Thismeans.

not AO = ("Do you buy lottery tickets' = no)
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not A1 = ("Do you currently own stocks' = no).
Using this notation:
BO= (A0 OR A1) AND (NOT AOAND NOT A1)

For this smal subsystem, BO is actudly expressed in terms of inputs to the subsystem (i.e, BOis
actudly B).

Digtributing the top level AND over the OR,
BO=(A0AND (NOT AOAND NOT Al))
OR (A1 AND (NOT AO AND NOT A1)

The first subexpression is FALSE because it contains AO AND NOT AO. Likewise, the second is
FALSE becauseit contains A1 AND NOT Al. Therefore, BOis FALSE becauseit isthe OR of only
FALSE expressons.

Consstency Step 3 -- Congstency of the Entire System

The results of subsystem consistency are used to establish the consistency of the entire system. The
basic argument is to use results on subsystems to prove that successively larger subsystems are
congstent. At each stage of the proof, there are some subsystem known to be consistent; initidly, this
is the subsystem that concludes godls of the expert system asawhole. At each stage of the proof, a
subsystem that concludes some of the input variables of the currently-proved-consstent subsystem is
added to the currently consistent subsystem. After anumber of steps equal to the number of
subsystems, the entire system can be shown to be consistent.

When a congstent subsystem that setsinput variables of the currently consistent subsystem is added to
the currently consistent subsystem, the augmented subsystem is consistent. Any input to the
augmented subsystem can be divided into a set V1 of input variables for the unaugmented system and a
set V2 for the newly added subsystem. Note that some variables may bein both of these sets. Since
the newly added subset is consstent, given V1, that subsystem produces and output O1. However, O1
union V2 isan input for the unaugmented system producing output due to its consstency. This shows
that the augmented system is consstent.

Since the number of subsystemsis finite the process of augmentation ceases after afinite number of
seps. By mathematica induction, using the above mentioned argument, it follows that the entire
system is congstent.

For KB1, one can apply the result, or aternatively make the following specific argument: Inputsto the
system as awhole can be partitioned into inputs for the risk tolerance and the discretionary income
subsystems. Each of these is consistent, and so produces a consistent set of risk tolerance and
discretionary incomes, respectively. These are inputs to the investment subsystem, and are that
sysem'sonly inputs. Since the investment subsystem is consistent, it produces a cons stent investment.
Thus an output for the entire system exists for each input, and the system as awhole is cons stent.
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The other subsystems of KB1 can be proved consgtent in the same way.
Sep 5 -- Soecification Satisfaction

In order to prove that KB1 satisfies its specifications, the user must actualy know what its
gpecificationsare. Thisisagpecia case of the general truth that in order to verify and vaidate, the user
must know what a system is supposed to do. Specifications should be defined in the planning stage of
an expert system project.

To illugtrate the proof of specificationsit will be assumed that KB1 is supposed to satisfy:
A financid advisor should only recommend investments that an investor can afford.

Aswith many other aspects of verification and validation, expert knowledge must be brought to bear
on the proof process. For KB1, an expert might say that anyone can afford a savings account.
Therefore, the user only hasto look at the conditions under which stocks are recommended. However,
that same expert would probably say that just having discretionary income does not mean that the user
can afford stocks; that judgment should be made on more than one variable. Therefore, it would be
reasonable to conclude that KB1 does not satisfy the above specification.

However, if the expert does agree that the expert system observes dl necessary inputs, one must use
inputs to the expert system to express a pecification. For KB, this means that the specification is
reexpressed as.

KB1 recommends stocks only when there is discretionary income.
The user can prove thisfor the investment subsystem by assuming:

NOT discretionary income
and proving:

NOT stocks

The only rule that concludes stocks has "discretionary income' = yesin an AND inits"if" part.
Therefore, the investment system satisfies the specification.

To prove the entire system satisfies the specifications, the user must look at the conditions under which
"discretionary income' = yesis concluded from inputs for the syssem asawhole. A financid expert
would surdly say that owning aluxury car or boat does not mean that discretionary income actudly
exists and the system as awhole fails the specification, an expected outcome of a smal example system
tackling a complex subject.
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5. Finding Partitions Without Expert Knowledge

This chapter presents techniques for partitioning large expert systems when expert knowledgeis
unavailable.

Introduction

Generdly, it is best to partition a knowledge base using expert knowledge, resulting in a knowledge
base that reflects the expert's conception of the knowledge domain. This, in turn, facilitates
communication with the expert, and later maintenance of the knowledge base. Chapter 7, “Knowledge
Modding”, presents techniques for partitioning using expert knowledge.

Sometimes, however, it is not possble to obtain expert indght into aknowledge base. In this case
functions and incidence matrices can be extracted from the knowledge base, and the information
contained therein used to partition the knowledge base.

Functions

Expert Systems are Mathematical Functions

Expert systems are, among other things, complicated functionsin the mathematical sense of function.
[By definition, afunction isaset F of ordered pairs, such that if (ab) and (c,d) arein F, and a=c, then
b=d] Lessformdly, afunction isa single-vaued mapping from an input space (caled the domain) to
an output space (called the range); i.e., thereis only one value of the function for each point in the input
goace. For example, KB1 isafunction that for each set of user data (i.e., amount of savings, persona
property, etc.) assgns atype of investment.

The input variables to an expert system viewed as afunction are the variables that are not computed
insgde the expert system, but are asked the of user or looked up in adatabase. Variablesthat are
inferred by rules or computed by functions in the knowledge base are not input variables. In KB1, for
example, purchase of lottery tickets and ownership of boats and luxury cars are input variables, while
risk tolerance and discretionary income are not. Tolerance and discretionary income, however, are
inputs to the investment subsystem of KB1.

Propositions that are possible conclusions of the expert system are Boolean output variables of the
expert syslem. Numerical or enumerated variables that are consdered outputs of the expert system are
aso output variables. When viewed as a function the value of an expert system is a vector of these
individud output variables.
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Partitioning Functions into Compositions of Smpler Functions

Functions can be written as compositions of smpler functions. For expert systems, two of the
important relations that build more complex functions from simpler ones are Cartesian product and
function composition.

Cartesan Product

Suppose that an expert system made two different kinds of recommendations, e.g., atraffic
management system that both set the timing of lights and controlled access to exit ramps. This expert
system could be considered as a function E that computed light timing and on ramp access from certain

inputs, e.g.:
E(inputs) = ( timings, access).
E could be split into two expert systems that computed these results separately:
E = (timings(inputs), access(inputs)) (5.2).

While some of the inputs and intermediate conclusions might appear in both subsystems, (5.1)
decomposes E into two subsystems using the Cartesian product operation. The Cartesian product
operation in this case takes the two separate conclusions, timings(inputs) and access(inputs) and builds
the conclusons of E:

(timings(inputs), access(inputs))
by putting the separate conclusions of the subsystems together in afixed, predetermined order.
More generdly, if:
(y1,..,ym) =f(wl,...wk),
(z1...,z9) = g(x1,....xn,),
then:
(y1,..,ym, z1...,zq) = f(wl,...wk) X g(x1,...,xn,),
where X isthe Cartesian product operator.

Applied to expert systems, thisresult meansthat if there is an expert system where input Ws are used
to compute the conclusion Y's, and the X s are used to compute the Zs, the system can be partitioned
into subsystems:

(y1,..,ym) =f(wl,...wk),

(z1...,z9) = g(x1,....xn,),
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and the results concatenated together.
Function Composition

Function composition uses the results of an earlier function A asthe inputsto alater function B to
compute asingle overal function C. Thisoverdl functionisthe result of :

1. Starting with theinputsto A.

2. Applying thefunction A to these inputs.

3. Applying B to the results of Step 2.

4. Using theresults of step 3 asthe vaue of C.

In the Pavement Maintenance Expert System (PAMEX), for example, various data items are used to
compute the "Pavement Serviceability Index" (PSl) and other measures of pavement life. The PSI and
other similar parameters are then fed into afollow-up set of rules that choose appropriate maintenance
procedures. PAMEX can be considered as a composition of the subsystem that computes indices with
the subsystem that uses these to compute gppropriate maintenance procedures.

In mathematical notation, suppose the output of an expert system depends on a set of variables,
yl..ym,i.e:

E=1(yl,...ym)

In addition, suppose each of the y'sisafunction of some other variables, i.e.,:
yi = gi(xd,....xmi)
Then E = f( g1(x11,....x1m),

g2(x21,...,x2m),

gn(xmd,...,xnm))

i.e., the expert system E isthe result of gpplying the function f to the result of applying Gsto the input
variables.

Note that which variables are functions of which others are properties of the expert system. This
means that a function implemented by an expert system can not be arbitrarily rewritten asthe
composition of ampler functions. Instead, the choice of smpler functionsis motivated by:



Which variables are functions of which other onesin the expert system knowledge base.

Which rewriting of the function computed by an expert system as the composition of functions
reduces the size of the VV & E problem.

For KB1, investment is acomposition of an investment function with risk tolerance and discretionary
income functions:

investment( risk_tolerance( "lottery tickets', "stock ownership"),
discretionary_income( "boat", "luxury car" ) ).

Dependency Relations

To find the functions embedded in a knowledge basg, it is helpful to compute the dependency relation
among variables.

Immediate Dependency Relation

Thefirgt step isto compute the immediate dependency relation. If X1 and X2 are variablesin the
knowledge base, X2 isimmediately dependent on X1, if and only if, the following are true:

X1 appearsin an expression that computes X 2.
X1 appearsintheif part of arule that sets or concludes X2.
XZ1isaninput to afunction that computes X2.

The table below shows the immediate dependency relation for Knowledge Base 1. Al appearsin cell
(1), if and only if, varigble Jisimmediately dependent on variablel.

The immediate dependency relation for Knowledge Base 1 isshown in table 5.1.

Table5.1: Immediate Dependency Relation for KB1

immediate dependency LC B S LT DI | RT INV
luxury car (LC) 0 0 0 0 1 0 0
boat (B) 0 0 0 0 1 0 0
stocks (S) 0 0 0 0 0 1 0
lottery tickets (L T) 0 0 0 0 0 1 0
discretionary income (D) 0 0 0 0 0 0 1
risk tolerance (RT) 0 0 0 0 0 0 1
investment (INV) 0 0 0 0 0 0 0




The immediate dependency relation shows which variables influence the value of other variables
through one level of computation (one rule inference or function computation) in the expert system.

Computing the Immediate Dependency Matrix

The immediate dependency matrix can be computed by syntactic ingpection of the source code
(including both rules and procedures) of the expert system knowledge base. Although the underlying
computation is basicaly the same, the computation can be described either as a database or asa sparse
matrix computation.

Database Description of Immediate Dependency Computation

The immediate dependency matrix can be constructed directly asfollows. In this congtruction, the
matrix is represented by arelation with 2 colums.

Column 1; A varidblethat affects another variable.
Column 2. A variable that is affected by another variable.

Each row in the table represents apair of variables such that the first affects the second directly in some
rule or function.

Start with an empty database.

For each rule or function in the knowledge base, find al pairs (x,y) such that x isan input and y an
output of the rule or function. Put each such pair in the database.

It isaso possible to construct the data base as the composition of two smpler tables:
Aninput table:

Column 1: Aninput variable.

Column 2: A rule or function in the knowledge base.
A row (x,f) appearsin thistable when avariable x isan input to arule or function f.
An output table:

Column 1: An output variable.

Column 2: A rule or function in the knowledge base.
A row (x,f) appearsin thistable when avariable x is an output to arule or function f.
Now by applying the following join operation to the tables, build atable where:

Column Lisaninput varigble.



Column 2 isan output variable.
Thereisarow for each variable pair (X,y) such that for somef, (x,f) isin table 1 and (y,f) in table 2.

Soarse Matrix Description of Immediate Dependency Computation

The relation between input and output variables describes a gparse matrix representing the immediate
dependency reation. The rows and columns are indexed by variables. A 1 appears for the matrix
position described by each row in the table constructed in the preceeding section, and a O appears for
al other matrix positions. By the definition of the immediate dependency relation, this sparse matrix
represents that relation.

The join-based computation described above can be written using sparse matrices as follow:
1. Construct input and output matrices:

The input matrix is based on table 1. The rows are indexed by variables and the columns by
functions and rules. A 1 appears when avariable is an input to arule or function. Zerosfill the
other matrix positions.

The Output matrix is based on table 2, but is the trangpose of the matrix that directly represents
table 2. The rows are indexed by functions and rules. The columns are indexed by varigbles. A
1 appears when avariable is an output of arule or function. Zeros fill the other matrix positions.

2. Compute the product of the input matrix by the output matrix.
3. Booleanize the product matrix, i.e. replace al non-zero entries by 1s.

This product matix has a 1 a position (x,y) whenever the product has a non-zero, i.e. when thereis a
rule or function f wherex isan input to f and f hasy as an output.

An Example

Dependency Relations of Ruleson Variablesin Knowledge Base 1

In KB1, dl atomic formulas set by the knowledge base are of the form:
VARIABLE =VALUE

When thisis the case, the immediate dependency of variables and rulesis sufficient to obtain the
dependency among variables. Table 5.2 shows how variables influence rules.
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Table5.2: How Variables Influence Rules
Rl |R2 |R3 |R4 |R5 |R6

LC 1 1
B 1 1

LT 1 1
DI 1 1
RT |1 1
INV

Dependency Relations of Variableson Rulesin Knowledge Base 1

Table 5.3 shows how rules influence variables.

Table5.3: How Rules Influence Variables

LC | B S LT | Dl RT | INV
R1 1
R2 1
R3 1
R4 1
RS 1
R6 1

Dependency Relations of Variableson Variablesin Knowledge Base 1

Multiplying A*B creates the matrix showing how each variable influences others. Positive numbersin
cdl (R,C) indicate that the variable in row R influences the variable in column C. Making thisinto a
Boolean matrix yields the immediate dependency matrix for variablesin KB1.

Table 5.4 shows the immediate dependency matrix for KB1.
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Table5.4: Immediate Dependency Matrix for KB1

LC B |S LT DI | RT INV
LC 0 0 0 0 2 0 0
B 0 0 0 0 2 0 0
S 0 0 0 0 0 2 0
LT 0 0 0 0 0 2 0
DI 0 0 0 0 0 0 2
RT 0 0 0 0 0 0 2
INV 0 0 0 0 0 0 0

Using the extended immediate dependency relation R just defined, the user can compute a sub-
knowledge-base that is sufficient to compute a set of variables. Let SO be a set of output variables for
afunction f, chosen as discussed in the previous section. Let RR be either one of the R *an or the
relaion R *d. Then the sub-knowledge base that computesf is defined by:

xisin Sub_KB(f) iff x RRy for somey in SO.
Operations on Relations

Using the immediate dependency relation, one may compute the influences of variables through any
number of levels of inference or function computation and composition. This requires union and
composition relations defined as follows:

Relation: A rdationis, from amathematical standpoint, a set of ordered pairs.

For example, the immediate dependency relation is shown as an ordered pair in figure 5.1

{(LC,DI), (B,DI), (SRT), (LT,RT), (DI,INV), (RT,INV)}

A pair (x,y) appearsin the immediate dependency rdation if and only if x influences the value
of y.

Figure5.1: Immediate Dependency Relation as Ordered Pairs

Domain: If Risardation {x|for somey, xRy} isthe domain of R. Some examples of domains are
shown in figure 5.2.

Domain of the investment subsystem of KB1:




{ ("discretionary income" = yes, "risk tolerance” = high),

("discretionary income"' = no, "risk tolerance’ = high),
("discretionary income” = yes, "risk tolerance" = low ),
("discretionary income' = no , "risk tolerance’ = low )}
Domain of the immediate dependency relation for KB1:
{luxury car, boat, stocks, lottery tickets, discretionary

tolerance, risk tolerance, investment}

Figure5.2: Examples of Domains

Range: {y|for somex, xRy} istherange of r. For example, the range of the investment subsystem of
KB1lis{ stocks, savingsaccount}; therange of the immediate dependency relationis{0, 1}.

Composdition: If R1 and R2 arerelations, the relation (R1 o R2) is defined asfollows: x (R1 0 R2) z if
and only if thereisay suchthatx Rly andy R2 z.

For example, the composition of the immediate dependency relation of KB1 with itsdlf is:
{(LC,INV), (B,INV), (SINV), (LT,INV)}.

For an immediate dependency relation R among the variables of an expert system, (x,z) isin RoR if and
only if thereisay such that (x,y) and (y,z) aeinR; i.e, thereisavariabley such that x influencesy
andy influences z. In other words, RoR shows the variables that indirectly influence another variable
acting through a single intermediate variable.

Matrix representation: When range(R1) = domain(R2)

the composition operation R1 0 R2 can be computed by matrix multiplication. A relaion Ris
represented by amatrix M ={m(i,j)} if and only if:

m(i,j) = 1iff x Ry wherex isvaridblei and y isvariable]
m(i,j) = 0 otherwise.
Table 6.1 shows the immediate dependency relation in matrix form.
If Mi represents Ri, B( M1 0 M2) represents R1 0 R2, where:

M1 0 M2 represents matrix product of M1 and M2.

59



B(M) ={bm(i,})} represents the Boolean operation on matrices, i.e.,
bm(i,)) = 1iff m(i,)) '=0
bm(i,)) = 0iff m(i,)) =0.

Theorem 5.1; If R1 and R2 are immediate dependency matrices, B(M1 o M2) represents R1 0 R2
when M1 represents R1 and M 2 represents R2.

This theorem says that the representation of the indirect dependency relation with one intermediate
variable can be computed by Booleanizing the matrix product of the immediate dependency matrix
with itself.

Proof: Let M bethe matrix that represents R1 o R2, based on a numbering of the relevant variables
vl,..vn. The(i,j) entry of M is1if and only if vi influencesvj. This meansthat there two sets of inputs
where the vi's differ, and aso where the results of applying (R1 o R2) to these inputs differ. On these
two inputs, one of the inputsto R2 must vary on the two inputs; if no input to R2 varied, the output
would also not vary on the two inputs.

Since @ least one input variable to R2 varieswhen vi varies, let vk be such an input to R2. Since vk
varieswhen vi varies, R1(i,k) = 1. Likewise, sncevj varieswhen vk varies, R2(k,j)) =1. Thismeans
that:

the kth entry of row i =1

the kth entry of columnj = 1.
Asareault, kth summand in the inner product:

(Row i of M1) * (columnj of M2) (5.2

is1l. Sincedl entries of M1 and M2 are non-negative, the Cartesan product (6.2) isnon-zero. This
means that (M1 o M2) hasanon-zero (i,j) entry, o B(M1 o M2)(i,)) = 1. Theresultisthat
everywhereM is1, B(M1oM2)isdso 1.

Now let (m,n) bealocationin B( M1 o0 M2) whichis1. Thiswill betrueonly if the (m,n) entry of M1
0 M2isnon-zero. Sincedl entriesof M1 and M2 are non-negative, (M1 o M2)(m,n) > 0. Thisentry
of M1 o0 M2 istheinner product:

(row mof M1) * (column n of M2)

S0 the inner product is podtive. Thisispossble only if thereisak so that the kth entry in each of these
vectorsis non-zero. This meansthat for somek, the kth entry of row m of M1 and the kth entry of
columnnof M2aeboth 1, i.e.:

M1(mKk)=1

M2(k,n)=1.



This meansthat vm influences vk and vk influencesvn. Therefore, vm influences v, showing that M,
the representation of (R1 0 R2), hasa1l wherever B(M1oM?2) hasal.

Combined with the earlier result, it is evident that the two matricesM and B(M1 0 M2) have the same
set of 1's. Since both matrices have only 1 and O entries, the matrices are equdl.

For example, in KB 1, B influences DI, asindicated by the 1 in the (B,DI) entry of theimmediate
dependency relation of KB1. Intable 6.1, thisappearsin the (2,5) location. Likewise, DI influences
INV, and the (5,7) entry of thetableis 1, meaning that multiplying the table by itsalf, when the inner
product of row 2 by column 7 is computed, the 1'sin position 5 cause the inner product to be non-
zero. Thisrepresents the fact that variable 2 (B) influences INV, variable 7, through the intermediary
of variable 5, VI.

Table 5.5 shows the matrix product of the immediate dependency relation by itself. Inthiscase, itis
also the Boolean composition operation.

Table5.5: Matrix Product of the Dependency Rdation by Itself

immediate dependency LC B S LT DI | RT INV
luxury car (LC) 0 0 0 0 0 0 1
boat (B) 0 0 0 0 0 0 1
stocks (S) 0 0 0 0 0 0 1
lottery tickets (L T) 0 0 0 0 0 0 1
discretionary income (DI) 0 0 0 0 0 0 0
risk tolerance (RT) 0 0 0 0 0 0 0
investment (INV) 0 0 0 0 0 0 0

Power: If Risardation,
R*1=R
R**(n+1) = R o (R**n).

The power relation finds those variables which influence a variable through a chain of intermediate
variables of some particular length. For R**n the chain of intermediate variablesis of length n-1.

If M represents R and M**n isthe product of n Ms, then B(M**n) represents R**n.

The previous table shows R** 2 when R is the immediate dependency ration. Higher powers of the
immediate dependency relaion are empty (all zerosin the matrix representation).

Theorem 5.2 M**n represents the indirect influence of variables with n-1 intermediate variables.
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Proof: Theorem 5.2 follows from Theorem 5.1 by mathematica induction.

Union: If R1 and R2 are relations with the same domain and range, the relation (R1 U R2) isthe
relaionsuchtha x (R1U R2) y iff x Rly or x R2Y.

The union and composition operations are used to build relations about dependency through multiple
levels of inference. For example, if x D2y, if and only if x influencesy, directly or through an
intermediate variable, D2 = D U D o D, where D isthe intermediate dependency relation and o isthe
composition operation.

Theorem 5.3: If Mi represents Ri, B(M1+M2) represents R1 U R2.

Proof: B(M1+M2)(i,j) = 1iff M1(i,)) or M2(i,j). Iff x istheith variable andy isthejth variable,
M1(i,j)) or M2(i,)) iff X Rly or x R2y, i.e.

x(RLUR2)y.
Figure 5.2 represents:
RU (R**2)
where R is the immediate dependency relation of KB1.
Accumulation: The accumulation operator R *an is defined asfollows:
R*al=R
R*a(n+l) =(R*an) U (R** (nt+l))

The accumulation R *an of ardation finds adl the variables that influence a variable through a chain of
n-1 or fewer intermediate variables.

Theorem 5.4: R *an represents the dependency relation between n-1 or fewer intermediate variables.
If M represents R, B(M *an) represents R *an.

Proof: Thisfollowsfrom Theorems5.2 and 5.3.

Dependency: Therdations{ limR*an} form an increasing sequence of relations, i.e, if (x,y) isin
*an, (x,y) isin*amfor m>=n. Therefore, the limit of this sequence asn --> infinity exigts, and is
equd to the union of theR *an for dl n. Thislimit will be cdled R*d.

Define the dependency relation D(R) asfollows: x D(R) y iff the variable x influences the variable y. It
isonly possiblefor x to influencey if thereis some (possibly empty) chain of intermediate, eg., X, z1,
.., ZN, y such that each variable influences its successor, i.e., each successve pair of variablesisin the
relation R. However, then x R**(n+1) y, sox (R*an) y,

0 X R*dy, and D(R) <= R*d.
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However, if x R*dy, for somen, (X,y) R*am for m > n (by definition of limit). Pick anmO>n. Then
x R*am0y, so for someml1 <= mo0,

x R**(m1) y. Thenthereisachan of ml+1 intermediate variables, z1,...zm1+1 such that
x,z1,...,zm1+1y isasequence in which successve variables are in R, and R*d < D(R).

Combining this with the previous result proves theorem 5.5.
Theorem 5.5: Thelimit R*d of the accumulation relations represents the dependency relation D(R).

Since both the sequences{ B(M*n)} and { R*n} are monotone increasing and have only afinite number
of possble vaues, each of these sequencesis eventualy congtant. That constant is the limit of the
sequence. Pick an nO great enough so that each sequence has reached itslimit. By Theorem 5.4, B(M
*n0) represents R *n0 where M represents R. Since equal matricies represent equal relations, the
limits can be substituted in this "represents’ relation, proving

Theorem 5.6; The matrix lim(n->infinity)(B(M *an)) represents D.

The dependency relation represents the relation that is true for al variables that influence a given
variable, and fase otherwise. Figure 5.2 isthe accumulation of the immediate dependency relation of
KB1. Anentry inthetableis 1iff the variable on theright is dependent on a variable on the l€ft.

To compute the dependency relation from the immediate dependency relation:

Compute in sequence each R *an.
When the R *an no longer change, the current R *an isthe dependency relation R*d.

Table 5.6. shows the dependency relation of the immediate dependency relation of Knowledge Base 1.

Table5.6: Immediate Dependency Relation of KB1



LC |B S LT | DI RT | INV
luxury car (LC)| O 0 0 0 1 0 1
boat B)|0 0 0 0 1 0 1
stocks 9]0 0 0 0 0 1 1
lottery tickets (LT)| O 0 0 0 0 1 1
discretionary income (DhH |0 0 0 0 0 0 1
risk tolerance (RT) | O 0 0 0 0 0 1
investment (INV) 0 0 0 0 0 0 0

Finding Functionsin a Knowledge Base

To carry out a partition of a knowledge base based on function composition, it is necessary to find
functions embedded in the knowledge base. In particular, the god isto find subsets S| and SO of the
knowledge base variables such that the:

Vauesof SO areafunction of theinputsin Sl.
Variablesin S are used a most infrequently outside this function.

Choosing the Output and Input Variables of a Function

Each column vector in the dependency relation matrix shows which variablesinfluence each other. For
example, the firgt 4 columns of the dependency matrix for KB 1 are dl 0s, because these are input
variables and are not influenced by any other variablesin the KB. Discretionary income (DI) has 1'sfor
the two variables that influence it, namely the boat and luxury car. Investment has nearly al 1's,
because dl variables except itsdf influenceitsvaue.

To find the set of variables whose Cartesian product will be the output of afunction in the KB, cluster
viahigh correlation the column vectorsin thetable. The clusters should be performed in such away
that al members of acluster are highly correlated with each other, indicating that al the variables
computed by afunction use about the same set of input variables.

The variable clusters of the dependency relation of the immediate dependency relation of Knowledge
Baselae

{luxury car, boat}
{stocks, lottery tickets}
{ discretionary income, risk tolerance}

{investment}



Once a st of output variables has been chosen, the set of input variables for the function consists of the
union of al variables for each member of the output variable set. Table 5.7 shows variable clusters of
the dependency relation of KB1.

Table5.7: Variable Clugters of the Dependency Rdation of KB1

VARIABLE CLUSTER INPUT VARIABLES
{LC,B,S LT} none

{DI} {LC,B}

{RT} {LT,S}

{INV} {DI,RT}

Finding the Knowledge Base that Computes a Function

In the previous section, the input and output variables were computed for a set of functions that
partition the knowledge base. Table 5.4 illustrates this partitioning for knowledge base 1.

Given the input and output variables for afunction, the subset of rules and functions in the knowledge
base used to compute that function can be found asfollows. Note that the input and output matrices
from which the immediate dependency relaion is computed are used in this computation. Refer to
Computing the Immediate Dependency Relation for details about computing these matrices.

1. Start with the output variables of the function. Set the current unprocessed output variables to the
set of output variables. Start with an empty set of rules and KB functionsin the KB subset
implementing the function; cal the set of implementing and rules IMP.

2. For each current unprocessed output variable y, and each function or rule f which hasy asan
output, add f to IMP. Removey from the set of unprocessed output variables.

3. For each f added to IMP, examine all x such that x isaninput tof. If x isnot an input to the
function for which aKB is being computed, add x to the set of unprocessed output variables.

4. Continue this process until the set of unprocessed output variables is empty.

Hoffman Regions

For logica completeness and consstency of an expert system, an important concept is the Hoffman
regions (suggested by Roger Hoffman of FHWA). If V1...Vn are the variables of a knowledge base,
with domains D1...Dn respectively, a Hoffman region isamaximal subset of the input space, the
Cartesan product D1x...xDn, on which each atomic formulain the knowledge base has a single truth
vaue. For any knowledge base, there isaunique set of Hoffman regions that cover and partition the

input space.

A run of an expert system is completely determined by the vaues of the atomic formulas that gppear in
the KB rules. Provided that the expert system does not use externa numerical software, thereisno
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need to run two different test cases that evaluate the same on al the atomic formulas. If two different
test cases evauate some atomic formula differently, however, the firing of some rule, and hence the
results of the expert system, may differ between the two test cases. Therefore, the set of test cases that
must be tested arein 1-to-1 correspondence with the regions where al the atomic formulas have the
same value. These regions where the atomic formulas are the same are called Hoffman regions.

Each point in input space determines truth values for each of the atomic formulasin the knowledge
base. A rdation H(P1,P2) can be defined on input point spaces as follows: H(PL,P2) istrue if and only
if P1 and P2 determine the same set of atomic formulatruth values for dl atomic formulasin the KB.

H s0 defined is an equivalence relation, and partitions the input space into mutually digointed regions
that cover the input space.

It isgeneraly not possible to find smple, exact descriptions for al the Hoffman regions when a
knowledge base contains atomic formulas that contain severd variables, eg., exp(X)<Y”3. Itis
possible, however, to find an gpproximate set of Hoffman regions of descriptions such that:
Every Hoffman region isin the approximate set of Hoffman regions.
A member of the gpproximate set of Hoffman regionsis either a Hoffman region, or is the empty
&, i.e. isan empty region of input space.
The et of possible Hoffman descriptions D can be computed as follows:
For atomic formulas containing two or more variables, the Hoffman regions of these atomic
formulas are TRUE and FALSE.

Sort dl the atomic formulas containing only one variable into subsets, putting al the formulas
containing the same variable together.

Normalize formulas containing relation operators so that the variable appears on the | eft.
Lexicaly sort the formulas for each variable asfollows:
The mgor sort is by the right side of the formula.

The minor sort is by relational operator, where the relation operators in ascending order are: <,
<=, =, >z, >,

Create a st of intervals for each numerica variable that:
Cover thered line, or at least the possble domain of the varigble.

For dl pointsin any interva, the truth vaues of the atomic predicates (of that sngle variable)
arethe same.

The intervds are maximal, given the truth value constraint.

For each gtring variable, let the Hoffman regions be the list of values that appear in the KB.
L et the Hoffman regions of the KB as awhole be the Cartesian product of the Hoffman regions for
the individud variables.

Note that in KB’ swith atomic formulas with more than one variable, the use of TRUE or FALSE as
the Hoffman regionsis a compromise to avoid having to decide exactly when combinations of these
formulas aretrue. This meansthat some Hoffman regions may be unsatisfiable. Therefore, if
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exhaudtive testing shows an incong stency in some Hoffman region which is partly defined by atomic
formulas of more than one variable, there are two possibilities:

The Hoffman region is unsatisfiable, so the expert system is OK.
The Hoffman region is satisfiable, and the expert system has an inconsstency.

If aHoffman region is found where the expert system isinconsstent, it should be determined whether
the Hoffman region is satisfiable. Table 5.8 illustrate this concept.

Table5.8: Hoffman Regionsfor KB1

LC=yes LC=yes LC=yes LC=yes
B=yes B=yes B=yes B=yes
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no
LC=no LC=no LC=no LC=no
B=yes B=yes B=yes B=yes
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no
LC=yes LC=yes LC=yes LC=yes
B=no B=no B=no B=no
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no
LC=no LC=no LC=no LC=no
B=no B=no B=no B=no
LT=yes LT=yes LT=no LT=no
S=yes S=no S=yes S=no

When is a Partitioning Advantageous

Let CH(KBO) be the cardindity of the Hoffman region set of knowledge base KBO. Theworst casein
proving aresult on a knowledge base KB with sub-KB KB1 is, using the result of the previous section,
CH(KB1) + CH(~KB1). If this number is sgnificantly smaler than CH(KB), the partitioning pays off
in reducing the sze of aVV&E problem.

Hoffman Regions of Partitioned KB1

The KB can be split into the following pieces:
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Final concluson KB: Thiscontainsrules 1 and 2, and determines the type of investment.
Risk tolerance KB: Thiscontainsrules 3 and 4, and determines the comfort level of the client
regarding risk.

Discretionary income KB: This containsrules 5 and 6, and determines whether the client has
discretionary income.

Each of these KB’ s has two input variables each with two vaues, or four Hoffman regions. Therefore
the total number of Hoffman regions after partitioning is twelve, a 25 percent reduction. A greater
reduction is found in many larger knowledge bases.



6. Knowledge M odeling

This chapter presents some knowledge models that can be used to partition knowledge bases using
expert knowledge. The chapter includes:

Definition of knowledge models.

Using knowledge modelsfor VV&E.

Using knowledge moddsin the expert system lifecycles.

Some example knowledge moddls.

Proof techniques for specific knowledge modes.

Specific knowledge models

Appendix A presents some mathematica results used in the chapter about partitioning using the clear
box methodol ogy.

Introduction

Knowledge models are high level templates for expert knowledge. Examples of knowledge modds are
decison trees, flowcharts and state diagrams. By organizing the knowledge, a knowledge mode helps
with VV & E by suggesting strategies for proofs and partitions; in addition, some knowledge models

have mathematica properties that help establish completeness, consistency or specification satisfaction.

More particularly:

The knowledge modd highlights the main points of a knowledge base, often obscured in the
knowledge base.
A knowledge modd partitions alarge KB into smaler, easer to verify, pieces.

There are mathematical properties of the knowledge model that help establish the correctness of a
knowledge base.

An Example of a Knowledge Mode

PAMEX (Pavement Maintenance Expert System) is an expert system for pavement maintenance
management [Aougab et. d., 1988]. A top level modd of PAMEX conssts of a partition of the
problem space on the following three variables:

69



Leve of information about the pavement; the 3 vaues are extensive, some and little or none.

Range of pavement serviceability index (PS)); the 3 values are above 2.8, between 2.8 and 2.0, and
below 2.0.

Theleve of trestment desired; the 3 values are long-range, mid-term and short-term.

For each of the twenty seven regions formed by the Cartesan product of the three regions on each
variable, thereisasmall expert system that handles problemsin that region. These smadl expert
systems use the same pavement variables, i.e., PSI and other more specific pavement measurements.
In this case, the modd isadecison tree, discussed and illustrated in the next section.

Using Knowledge Moddlsin VV& E

The gtepsin using aknowledge modd in VV&E are:
Collect the knowledge modd from:
The domain expert(s) working on the project.
Standards documents in the domain.
Notes from knowledge acquisition at the time an existing system was built.

Validate the knowledge; see Chapter 9 on knowledge vaidation for details. This step isto ensure
that the knowledge going into the expert system represents correct expert knowledge.

Prove the expert system using the knowledge model is complete, condgstent and satisfiesits
specifications; this chapter, as well as chapters on partitioning and small systems, provides
information on how to develop these proofs.

Decision Trees

Introduction

A decison treeisaset of decisonsthat partitions the input space into a set of digoint regions that
cover the entireinput space. In adecison tree system, a sequence of decisons based on user input and
other data are used to classify the input problem before going on to the rest of problem solution.

Thetop of the decision tree corresponds to the start of the decision process. At each interior node of a
decison tree, the problem is supposed to be assigned to one and only one of the subnodes. The
solution of the detailed problemsis often handled by specidized expert sysemstailored to the
gpeciadized stuations found by the decision tree.

Definition

A decison tree expert system has a structure that is described by atree. A decision tree system hasthe
following properties:
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Each interior node of the tree has a variable or expression assigned to it.

Each edge to asubtree islabeled with a set of valuesfor that variable or expression on the parent
node.

All possible values of avariable are on some edge.
No variable vdueis on two different sbling edges.

Associated with each leaf nodeis a subsystem or output(s). A subsystem at atip node N of a
decison treeis cdled to solve the problems for which variables appearing in the tree have vaues
associated with the path that leadsto N.

Example
A decison treefor PAMEX isillustrated in figure 7.1 of the following page.
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PAMEX Decision Tree

Start
No Info Some Info Complete Info
PSI<22 PSI>=2.2 & PSI<=2.8 PSI>28 PSI<22 PSI>=2.2 & PSI<=2.8 PSI>28 PSI<22 PSI>=2.2 & PSI<=2.8 PSI>28
— Long — Long — Long — Long —— Long — Long —— Long — Long — Long
— Medium [ Short —— Medium —— Medium — Short —— Medium —— Medium — Short —— Medium
— Short — Medium — Short —— Short — Medium — Short — Short — Medium — Short

LEGEND
PSI: Pavement Serviceability Index

Info: the amount of information
available about the pavement

short, medium, long term: the time
period for which the fix is made,

subject to budget constraints Pavement Maintenance Expert System

Figure6.1: Pamex DT
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Use During Development

Decison trees are a useful way to organize expert knowledge. Their useisindicated when the expert
can describe in what order information is obtained and used to partiadly determine a solution. Drawing
adecison tree from information the expert(s) have provided is agood way to present the knowledge
engineer's conception of the information back to the domain expert for validation.

Use During W& E

To mode an expert system as adecison tree for the purpose of showing correctness, the following
conditions should be satisfied:

Each possible set of inputs should bein one and only one of the partitions generated by the decision
tree.

For each partition, there is an expert system (a subsystem of the entire system) that correctly solves
problemsin that partition.

Experts validate the decision tree.
The expert system assigns each input to the correct partition as the result of afinite computation.

To prove completeness of an expert system modeled by a decision tree, prove the following:

Each possble problem in the input space is assigned to some partition of the decision tree.
Each expert system assigned to one of the partitions computes a solution for each problem
assgnedtoit.

To prove congstency of an expert system modeled by adecision tree, prove the following:

Each possible problem in the input space is assigned to at most one partition of the decision tree.

Each expert system assigned to one of the partitions computes at most one solution for each
problem assigned to it.

Each computed solution isinterndly consistent.

To prove satisfaction of a requirement of an expert system modeled by a decison tree, it needsto be
shown that the requirement is satisfied for the expert system associated with each tip of the decision
tree.

Ripple Down Rules

Introduction

Ripple down rules (RDR’s) [Kang, et a, 1994.] are aspecid case of decison treesfor reasoning with
defaults. RDR'’s are guaranteed to be complete and consistent.
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Definition

With ripple down rules, the knowledge base is organized asligts of rules. |If the conditions ("if" part) of
arule are satisfied, then the expert system movesto the part of the knowledge base attached to this
rule. In some cases, thisis another list of rules. If so, the expert system teststhe rulesin the sublist. If
thereisno sublist of rules, or if none of the sublist rules are satisfied, then the conclusions "then part” of
theruleisused. Figure 6.2 demongtrate an example of asmal expert system for vehicles classfication.

Example

Asan example, asmal expert system for vehicles classfication is presented.
Themainligis
L11: If NOA (Number -of Axles)is?2

Try List 1-1; Default = Car.
L12: If NOAis3,

Try Ligt 1-2; Default = 3 Axle-single unit Truck.
L13: If NOA is4,

Try Ligt 1-3; Default = 4 Axle-single unit Truck.
L14: If NOA is5,

Try Ligt 1-4; Default = 5 Axle-single unit Truck.
etc.

Here are the lists that fill out the next level of the knowledge base; note that thisis not an exhaustive
knowledge base.

L1-1.1: If S1<=12 itisaCa-Van-Pick up.
L1-1.2: If S1<=20,itisa2 Axle-sngle unit Truck.
L1-1.3: IfS1>20,itisa2 AxleBus.

L1-21: IfS1<=12& 8<S2<=18,itisaLight Vehiclew/ Single Axle Trailer.
L1-22: If7<Sl<=20& S2<=8,itisa3 Axle-sngular unit Truck.

L1-23: IfS1>20& S2<=8,itis3 AxleBus.

L1-24. If Else itisa2 Axle Tractor w/ Singular Axle Traller.

L1-31 IfS1>7& 2+ S3<=12,itisa4 Axle-sngular unit Truck.
L1-32: IfS1>7& S2<=8& S3>6,itisa3 AxleTractor w/ Singular Axle Trailer.
L1-3.3: If Elsg itisa2 Axle Tractor w/ Tandem Axle Traller.

L1-4.1: If S2+S3+A < 16, itisa5 Axle-sngular unit Truck.
L1-4.2: If S2<=8& HA<=105, itisa3 Axle Tractor w/ Tandem Axle Traller.
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L1-43: 1fS2>8& S3+HA<=12,itisa2 Axle Tractor w/ Tridem Axle Trailer.
L1-44: 1fS2>8& 12<S3+ A <=16, itisa2 Axle Tractor w/ Tridem Axle Trailer Split.
etc.

Figure 6.2 Example ES (continued)
Similar rule lists could expand lists 1-3 and 1-4.

The expert system dtarts the example and the system movesto list 1-2 (likewise for the other L1 rules).
If none of the entry conditionsto therulesinlist L1 is satisfied, the default of L1, car, isthe KB
conclusion.

Under the condition that NOA is 3, the system movesto list 1-2 and if none of the entry conditionsto
thoserulesis satisfied, the default of L2, axle-single unit truck, isthe KB conclusion.

Use During Development

Kang et d., 1994 point out that it is possible to add correction rules to a running ripple down rules
expert system. Whenever an error occurs, that error gets added to the last list of rules which the
system tried before choosing an erroneous default.

Ripple down rule systems are idedlly suited to problems where knowledge has the following structure:

Early decisions made on a problem narrow the range of possible solutions, while later decisons
pick particular solutions from a selected class.

Thereisadefault solution at each stage of the solution process.

Changing a Ripple Down Rule System

Ripple down rules are a specia type of decison tree. For aknowledge base that consists of a series of
more detailed decisons, but where the bases of the more detailed decisons vary for different points of
the decision tree, the ripple down rules modd is appropriate.

Given: an RDR, and arule (if C then A) which the agorithm should execute, the dgorithm change
modifies the KB to make (if C then A) part of the system:

cael: Topleve list of RDR isempty.
If default(RDR) = A, do nothing,
edseinsat (if Cthen A) asal-dement list of RDR.

case 2. The conditions on thefirst rulein thetop level list of RDR = C.
Attach to thefirst rule the RDR with default = A and empty rulelist.

cae 3: The conditions on thefirst rule subsume C.
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Replace the RDR attached to the first rule, denoted by R2, with change(R2).
cae 4. C subsumes the conditions on thefirst rule.

Replace the firgt rule with (if C then A).
case5: C and the conditions of the first rule can be smultaneoudy satisfied.

Insert (if C then A) before thefirst rule.

otherwise: Let RDR = H++T, where H isthefirst rulein the top level list, and T isthe rest of the rules.
Insert (if Cthen A) InT.

Use During W& E

Completeness of aRDR system follows from the following theorem:

A Ripple-Down-Rule System is Complete.

Proof: Note that part of an RDR system attached to atop leve ruleisitsef an RDR system.

Definethe level of an RDR system asfollows: If the sysem hasonly 1rulelig, itisof level 1. If the
system has N+1 ruleligts, then it haslevel 1+Max(level of RDR subsystems of the top leve rulelis).

Let R bean RDR system of level N+1. Assume dl RDR systemsof level N are complete. For any
input, either some top level condition is satisfied or not. In the latter case, the system concludes the
default. Inthe former case, the system finds the concluson computed by RDR rules from the first
satisfied top leve rule. If thereisarulelist associated with that condition, the conclusion is from an
RDR system of level a most N, and so exigts. If thereisno rulelist, the conclusion isfrom the
condition itsdf. Therefore an RDR system produces a conclusion in al cases.

Inasmilar way, it can be proven that all RDR systems are consstent. Consistency, however, requires
an additional check: that the conclusions associated with each path through the ripple down rule tree
are congstent.

Satisfaction Of Specification: To verify that an RDR satisfies a proposition P
1. Verify or modify the default of the top leve rule set.

2. Veify or modify thefirst rule, if any inthetop level list to satisfy P.

3. Veify or modify the RDR system attached to the first rule, if any.

4. Let RDR =H++T, whereH isthefirs rulein thetop leve ligt, and T isthe rest of therules. Verify
or modify T to satisfy P.

Generalizations Of RDR A generdization of RDR systems occurs when the conditionsin RDR rules
are replaced with specidized expert systems whose purpose isto make the decison specified in the if

76



part of the RDR rule. When, in an ordinary RDR system an RDR ruleif part isevaluated, a
generalized RDR system may call an expert subsystem. Thisis abackward chaining process dthough
RDR systems are more structured than genera backward chaining systems.

The same dgorithmsfor VV&E on RDR systems aso work for generalized systems, provided that the
expert subsystems carry out the tests provided in the rule condition that the subsystem replaces.

State Diagrams

Introduction

A date diagram is a useful formd representation for the top level of process control expert systems.
Definition

A date diagram system is one where there is a unique state at every step of asolution, and at each
date, there is afunction that determines the next state.

Example
A date diagram can be used to modd driver behavior on aroad segment. A set of states indicates the
Stuation and/or god of the driver. For example, some possible sates are:

Distance ahead too small.

Clear road ahead.

Approaching desired exit.

A driver modd based on these states is shown below. The case satement branches on the value of the
variable state.

state = start_loop;
while ( state is not equd to exit)
case (state)
[
case start_loop:
if (distance ahead istoo small)
state = distance ahead too smdll;
€lse (gpproaching desired exit)
date = exit;
else (clear road ahead)
state = clear road ahead;
else dday agndl time increment;
case clear road ahead:
if (current speed < desired speed)
increment speed;
delay asmdl timeincrement;
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state = start_loop;
case distance ahead too small:

if (current speed < desired speed)

{ if (passing possible)
pass,
€l se decrease speed; }

dday asmdl time increment;

state = start_loop;
case exit;

return any current useful information to calling program

In this example, the decision to pass may be made by another expert system. In addition, fuzzy logicis
often used to assgn amembership grade representing how much the current Situation belongs to each
of the possible sates. In this case, the expert system chooses a gate with the highest membership
grade and executes the code associated with that State.

State Diagram Systems Represented as Rules. Systems based on state diagrams may be encoded into
expert system rules. The following include two of the rules that would implement the above example
in rule form:

if state = start_loop
and distance ahead istoo small
then state = distance ahead too smadll.
if state = start_loop
and gpproaching desired exit
then exit and return information to calling program
if state = start_loop
and clear road ahead
then state = clear road ahead
if state = start_loop
and not ( distance ahead istoo smdll
or approaching desired exit
or clear road ahead)
then delay asmadl time increment
if state = clear road ahead
and current speed < desired speed
then increment speed
and delay asmal time increment
and state = start_loop;
if state = clear road ahead
and current speed >= desired speed
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then and dtate = start_loop;
if state = distance ahead too small
and current speed < desired speed
and passing possible
then pass
and delay asmal time increment
and state = start_loop
if state = distance ahead too small
and current speed < desired speed
and not passing possible
then decrease speed
and delay asmall time increment
and state = start_loop
if state = distance ahead too small
and current speed >= desired speed
then decrease speed
and delay asmal time increment
and state = start_loop

Use During Development

State diagram models are useful during development when expert knowledge has the following
characterigtics:

The problem solution consists of a series of distinct steps.

Which step to choose is acomplex, but knowledge-based decision.

The possible paths through the steps may contain loops.
To run such arule-based system based on state diagrams generdly requires an inference engine that
can do both forward and backward chaining with the same knowledge base in a strategy called forward
chaining with local backward chaining. In this strategy applied to the knowledge base forward chaining

keeps applying rules until arule containing the command to exit the knowledge base fires. Backward
chaining is used to establish the conditions within the rules, e.g., passing possible in the above example.

Use During W& E

Completeness of a state diagram system can be established by showing that for any inputs the system
eventually reaches afinal state where it returns information and exits to the calling environment. Ina
complex system in which the predicates that control transitions between states are themsalves expert
systems, the proof of completenessis hierarchica:

1. Assume that the expert subsystems satisfy their specifications. Using this information, prove that
the system reaches afinal dtate.
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2. Prove that the expert subsystems satisfy their specifications, and aso that they terminate for any
possible inputs.

Since atable of one vaue for each of aset of variablesis consstent, Sate diagram systems that return a
st of variable vaues when they reach afina state are logically consstent. The set of variable vaues
may be unsatisfiable, however, given the specifications for the expert system and expert knowledge
about the domain.

To show that the output of a state diagram system satisfies a specification for the expert system
demondtrate that:

For each dtate, if the specifications are satisfied on entering the state, they are also satisfied when
leaving the State.

The specifications are satisfied at the start state. Often the specifications aretrivialy satisfied at the
sart Sate, because the values of output variables are unknown.

The system aways reaches afind date.
Satisfaction Of Specifications To prove that a specification for a state diagramsis satisfied, one

should prove that for any input in the input set of the specification, the state diagram eventudly
reaches afind state in which the requirements of the specification are satisfied.

Flowcharts

Introduction

Howcharts are another method for recording expert knowledge and can serve asamodd for the
knowledge in an expert system.

Use During Development

Howecharts can be implemented best by using aprocedura programming language, i.e., alanguage that
permits:

Blocks, i.e., sequences of statements used as aSingle Satement.

Branching statements, e.q., if-then-else or switch statements.

Loops, eg., while, do and for loops.

Function calls, permitting a procedure to cal other procedures or itself.
If, however, some procedura knowledgeisincluded in alargely non-procedural knowledge base and

the available implementation shell does not permit procedura programming, it may be more convenient
to encode the procedural knowledge in rules.



In this case, aflowchart can be represented in rule form by associating a state with each box in the
flowchart and by writing rules that describe the transitions between boxes represented by the linesin
the flowchart.

Use During W& E

Completeness, consstency, and satisfaction of specifications for flowcharts are smilar to the problems
for state diagrams.

If the effect of the flowchart isto set variable vaues, dot vaues on objects, or build other data
structures, the logica statements represented by these structures can usualy be satisfied. The result of
the flowchart islogicaly consstent but not necessarily consistent with the specifications for the expert
system or other expert knowledge about the gpplication domain.

Consstency: Fowcharts need not produce congstent output even when:
The flowchart dways reaches an exit box.
All of the variables that are outputs of the system have aunique vaue.

If, however, al possible tuples (ordered list of variables) of output variable values are consstent i.e.,
for any assgnment of valuesto output variables, it islogicaly possble, and consstent with domain
expertise, for the variables to have those variables smultaneoudy. Then, if for al inputs, the flowchart
defines unique valuesfor dl the output variables, the flowchart is consistent.

Completeness: A flowchart islogicaly complete, if no matter what the inputs, the flowchart dways
reaches an exit box. For thisto be true, the one must prove that:
The computation eventudly exits from any loop entered within the flowchart.

All functions called within the flowchart satisfy their specificationsfor dl inputsand perform ther
computation in afinitetime.

Satisfaction Of Specifications. To show that a flowchart system satisfies its specifications, the basic
dtrategy isto show that if the specifications are satisfied on entry to each box in the flowchart, they are
satisfied on exit from the box. Specifications are generdly satisfied before the initia box because
variables are not yet set to vaues, but indicating that specifications are satisfied at the sart isa

necessary part of the proof of specifications.
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If box A of the flowchart hasjust one exit line L going to box B, then A, B, and L represent a sequence
of separate computations. To show that this part of the flowchart satisfies the specifications, one
should demonstrate that:

The computationsin A and B can always be carried out in only finite time.
If the specifications are satisfied on entry to A and B, they are satisfied on exit. In proving the

gpecificationsfor B the user can assume the results of the computationsin A, in addition to the
Specifications that were assumed on entry to A.
If box A of the flowchart performs atest to decide aproposition P, and if A hasexitsto box B if Pis
true and box C if Pisfase, then the user must demongtrate that:
The specifications are true at the exit box(es) when starting at B with the assumption of the
specifications plus P, and that the computation dways reaches an exit box in afinite computation.

The specifications are true at the exit box(es) when starting at C with the assumption of the
specifications plus not P, and that the computation aways reaches an exit box in afinite
computation.

If aflowchart contains aloop, one must demongtrate that, for al inputs satisfying the specifications, the
following criteria are met:
The specs are true on exit from the loop.
Given the following assumptions at the loop exit:
The specifications.
The results of computationsin the loop.

The conditions for exit from the loop.

The flowchart computation reaches an exit box in finite time and the specifications are true when
reaching the exit box.

Functionally Modeled Expert Systems

Introduction

As discussed in the chapter on partitioning without expert knowledge (see Chapter 5), an expert
system can be thought of asafunction. A function maps sets of inputs (information the expert system
receives from the user or other externa sources) into a set of outputs reflecting actions taken and
conclusonsinferred by the expert system. Idedlly, the function that an expert system representsis that
which maps each set of problem inputs into the set of actions and inferences that an expert would make
given thoseinputs. The expert system will be said to implement this function, and the function will be
said to model the expert system with the understanding that an expert system only approximates the
behavior of an expert.

Some functions are built from smpler functions with operations such as (function) composition or
Cartesan product (operations discussed in more detail below). Sometimes, because of domain
knowledge, the expert system should represent afunction that is constructed from smpler functions. If
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that isthe case, the structure of the function provides the knowledge engineer with tools for structuring
and partitioning an expert system.

More particularly, the operations of Cartesian product and function composition in the category of
functions are of particular importance in modeling expert systems. Let E be an expert system such that
the output of E involves setting variables O1,...,0n such that the values of the O’ s are independent of
each other. Then E implements the Cartesian product of functionsfi such that Oi = fi(li), whereli isa
subset of the inputs of the entire expert system found by computing the dependency relation (see
Chapter 6 on partitioning without expert knowledge) starting with Oi.

If one of thefi isacomposition of functions, eg.

fi = h( gl(li), ..., am(li))

then using the same techniques of Chapter 6, one can find subsystems of the origind expert system that
implement the g's and h can be found.

Asdiscussed in more detail below, if the expert subsystems are complete, consstent and satisfy
specifications, and if there is consstency and specification satisfaction among independently chosen
possible vaues of Cartesan component subsystems, the entire expert system is complete, consistent
and satisfies specifications.

Note that this does not mean that completeness, consistency and specifications satisfaction of arbitrary
subsets of an expert system imply corresponding results about sysiems asawhole. The subsets must
be those that implement functions used to construct the function that models the expert system, and
certain additiona requirements among the outputs of component systems must be met.
Expert knowledge is generaly of great benefit in identifying:
I ndependent outputs that can be used to decompose an expert system into a product of expert
systems.

Intermediate hypotheses that are functions of the problem inputs but are themsalvesinputsto a
later function that produces some or all of the outputs of the system as awhole.

Following are some examples of composite functions which provide opportunities for structuring and
partitioning expert systems.

Use During Development

These drategies often smplify development by replacing a single development task with two or more,
which islessthan the origind task. During VV&E, these drategies likewise replaceasingle VV& E
task with two or more devel opment tasks where the total Sizeislessthan the origina task.

In each of these cases, the key to whether the partitioning makes these problems smaller is found by
counting Hoffman regions. If E is partitioned into EL,...,En, then if:

(H(EL)+..+H(En)) / H(E)



isggnificantly lessthan 1, partitioning E into the Ei decreases the size of the development or VV&E
problem. Note that usualy, some rules and variables may be contained in more than one of the Ei.

Cartesan Product Systems.  Sometimes an expert system E is required to make more than one
decison, e.g., to find values for two different (sets of) variables. In this case, the user can represent the
expert system function e of input | as:

(1) = (eL(1), ..., en(l)).

Using the techniques of chapter 7, the user can find subsystems Ei which implement e respectively. If
H(X) isthe number of Hoffman regionsin expert system X, then if

(H(EL)+..+H(En)) / H(E)

isggnificantly lessthan 1, partitioning E into the Ei decreases the sze of the VV&E problem. [Note
that some rules and variables generally appear in more than one Ei.]

consistency: If each of the Ei is consstent, and if the union of consistent sets of output from each of
the Ei is congstent, the entire expert system is consistent.

completeness. If each of the Ei is complete, the entire expert system is complete.

specification satisfaction: Generdly, proving that specifications are satisfied will involve consideration
of the interaction of the outputs of the Ei. However, if aspecification is of the form

If Cland C2...andCnthen S (6.2)
then (6.1) is equivaent to the set of pecifications
If (AND Ei satisfiesCi) then S.

Final Layer Partitioning: In find layer partitioning, the expert system is partitioned into:

Thefinal layer expert systemthat consists of al rules and functions that have astheir direct outputs
conclusions of the knowledge base.

Information gathering expert subsystemsthat conclude the inputsto the find layer system.

Thefinal layer system contains al rules and functions that produce one or more of the conclusions of
the entire expert system. Theinputs of the find layer expert system are the inputs to these rules and
functions. In KB1, the investment subsystem isthe find layer expert system.

For each of the input variablesto the fina layer expert system, there is an expert system that determines
that input to the find level; that expert system can be found using the methods in the chapter on
partitioning without expert knowledge. In particular, if thefina level input variablesare vi,...,vn, let
E1l,...,.En be the expert systems that set these variables.

Those Ei and Ej which overlap grestly, so that:



(H(E) + H(E))) / H( Ei union Ej) >=1
should be combined into asingle expert system that produces both vi and vj. If, on the other hand,
(H(E) + H(E))) / H( Ei union Ej)

issgnificantly lessthan 1, Ei and Ej should be kept separate. Note that as described in the chapter on
partitioning without expert knowledge, clustering of vectors from incidence matrices can be used to
determine which of the information gathering subsystems to combine.

Partitioning into afind layer subsystem and information gathering subsystemsiis particularly useful
when there are many rules which compute outputs from the information gathered from the subsystems.
PAMEX isan example of such an expert system. In this case, incompleteness or inconsstency in the
find layer expert system causes the same error in the entire expert system; furthermore, if there are
many rulesin thefina layer subsystem, such errors are easy to make.

Consstency. The entire expert system is consistent when:

Thefinal layer expert system is consistent whenever it gets consstent inputs.
Each of the information gathering subsystems is consistent.
All unions of consstent output from each of the information gathering subsystems are consistent.

Completeness. If each of the information gathering subsystems is complete and the find layer expert
system is complete, then the entire expert system is complete.

Satisfaction Of Specifications  Generdly, proving that specifications are satisfied will involve
congderation of the interaction of the outputs of the information gathering subsystems.

However, if aspecification is of the form:
If CLand C2...and Cnand Cf then S (6.2
where Ci isacondition on subsystem Ei and Cf isa condition on the find layer,
then (6.2) is equivaent to the set of specifications:
If (AND Ei satisfies Ci)
and thefind layer satisfies Cf,
then Sis satisfied.

Intermediate Variables. Intermediate variables are variables that are computed or inferred from input
variables, and are used to infer or compute conclusions.




Many expert systems can be decomposed into two sequentid steps (an expert can often tell the user
about such a decomposition):

1. Deerminethe value of some intermediate variables.
2. Draw conclusons from these intermediate variables.

In addition, an intermediate variable is useful for partitioning only if some of the input variables of the
system as awhole are used for computing the intermediate variable.

In function notation, an expert system with an intermediate variable is of the form:
e(x1,....xn) = g(x1,....XK, y), wherey = g(xk+1,...,,Xn).

Results about completeness, consstency, and specification satisfaction are entirely analogous to those
for find leve partitioning. However, therole of the find level expert system isthat expert system
which implements the function:

e(x1,....xk, y)

with inputs x1,....xk and y. This expert system can be found by the method in chapter 5. Thesingle
information gathering subsystem is.

g(xk+1,...,.Xn).

Partitioning Of The Function Domain: Let E be an expert system which implements the function &(1),
where | isavector of inputs. Let the domain of | be some domain D, such that D is partitioned into
mutualy exclusve subsets{Di}, i.e,

Unior{ Di} =D
Di intersection Dj = NULL fori =]
Let Ei be the expert system that implements the function:
eredtricted to Di
Then the following results relate correctness of E to the correctness of the Ei.
Consstency:. If each of the Ei isconsstent, soiSE.
Completeness: If each of the Ei iscomplete, 0 iSE.
Satisfaction Of Specification: If aspecification is satisfied by each Ei, it is satisfied by E.

Examples of domain partitioning occur in decison tree systems. The effect of the decision tree is to
partition the entire domain of the expert system into subsets, each of which satisfies the conditions
along the path from some leaf node of the decision treeto the root of that tree.
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Verifying Knowledge Modd Implementations

Overview

Knowledge models are useful for proofs because knowledge models may have certain established
properties, such as consistency and completeness, that automatically apply to any system that uses the
knowledge modd. This meansthat one can smplify the task of proving something about an expert
system by showing that it uses a knowledge mode!.

However, nothing isfree. If one uses aknowledge mode to establish the properties of a system, one
must show that the system actudly uses, i.e. implements, the knowledge model. Thisrequirement is
explained below.

Implementation of a Knowledge Model
An expert system implements a knowledge modd if:
The data required by the knowledge modd can be identified in the expert system

The data used in the knowledge mode is interpreted by the expert system according to the rules
required by the knowledge model.

For example, to show that a rule-based expert system implements a decision treg, it should be shown
that:

1. Theexpert system hasrulesthat fire for each branch of the decision tree
2. The expert system gathers the information needed to select a branch in the decision tree

3. After gathering that information, the expert system selects the branch, i.e. the expert systemsthe
subsystem attached to the branch determined by the just-gathered information.

Proofs Using a Knowledge Model

If aknowledge modd is used to establish that an expert system has some property, there are two things
that need to be done:

1. Show that for a knowledge base that fits the knowledge model, the desired property istrue.

2. Show that the expert system implements the knowledge model. How to do so isthe subject of this
section.

EXAMPLE
Verifying a System based on Decison Tables

The KB1 demongtration expert system isshown in Figure4.1. Theinformation in the knowledge base
isshown in the following decison tables.
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Example Decison Tables

Risk Tolerance

Discretionary
Income

I nvestment

Boat
Luxury Car

Discretionary
Income

Lottery Tickets
Stocks

Risk Tolerance

Analyzing KB1 With These Decision Tables

yes

Yes

Stocks

yes
yes

Yes

yes
yes

Yes

Bank Account

Invesment Decison Table

no

Ye€s

Bank Account

Discretionary Income Decison Table

no
Yes

Yes

Risk Tolerance Decison Table

no
Yes

yes

no

no

Bank Account

no
no

no

no
no

no

Toillugtrate verifying a knowledge base, the knowledge base expressed in the decison tables will be
accepted as correct; our current goal isto see that the code implementing the knowledge base contains
the information in the decision tables, and only that information.

The following tables shows which rulesin Figure 4.1 implement which parts of the decison tables.

Rule

I nvestment

Columns

1



2 [nvestment 2thru4

3 Risk Tolerance 1thru3
4 Risk Tolerance 4
5 Discretionary Income 1thru3
6 Discretionary Income 4

To illugtrate how thistable isinterpreted, Row 2 means that Rule 2 implements columns 2 through 4 in
the Investment decision table above.

Building the Rule/Decision Table Relation

The Rule/Decison-Table relation was created by inspection, but the information therein is actually the
result of smple mathematica reasoning that need not be done in detail, but which must be doable. In
particular, it must be shown that whenever the conditions of one of the decison tree columns
associated with arule are true, the rule produces the conclusions(s) of that column of the decision tree.
For example, choosing column 2 in the Investment decision table means that:

Risk Tolerance = yes
Discretionary Income = No
This causes Rule 1 to fail and rule 2 to succeed, producing the results of column 2 of the decision table.

It must dso be shown that the only way for any ruleto fire isto satisfy some column listed for it in the
Rule/Decison Tablerelation. For Rule 2 thisfollows from the definition of OR, which requires that
one of itsargumentsistrue.

The combination of the these two kinds of arguments show that the rules contain the same logical
information as the decison tables. However, it is aso necessary to show that the expert system
actually uses these rules for each branch of the decison tree. Thisisbecauseit is possible that the
inference engine might never fire arule that would succeed if it werefired. Therefore, to show that an
expert system actualy implements the decision tree, one must show that the inference engine gathers
the necessary information, and firestheright rules.

\erifying and Implemented Expert System Code

To illugtrate this process, it will be shown that the implementation code in Clips, shown in Step 3.2 of
the Handbook finish this example, implement decision trees similar to those shown above. [The Clips
code uses an additiona criterion of amount of savings for discretionary income, so the decision trees
do not exactly apply to its knowledge base.]
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Firgt, we show that Clips gathers the information needed to run the decision tables. Rules a-5¢ and 3a-
3b gather thisinformation. These rules contain only conditionsin their if parts that are satisfied when
Clips sarts, so these rules will befired, snce Clipsis forward chaining.

Here we are using properties of Clips described in the User Reference, and are assuming that Clips
meetsits specifications. This means that we are proving that our knowledge base is correct, assuming
Clips meets the specifications we use in the proof. This makes our knowledge base correct conditional
on the correctness of Clips, but thisis a reasonable compromise in practice. It is much more likely that
something new will contain an error than awell-used program like Clips. However, it should be noted
that errors have been found in much smpler library programs than Clips, and that in safety-critical
systems, the assumptions made about Clips should be verified by testing.

Given that the rules 5a-5¢ and 3a-3b fire, information needed to put the current problem being run on
Clipsinto some columns of the risk tolerance and discretionary income tablesis gathered. This
information creates conditions under which 5d and 6 can fire, according to conditionsin the
rule/decison table relation table. This determines the value of discretionary investment. Similarly, rules
3c and 4 have enough information to be fired by Clips forward chaining inference engine. This
provides the information needed to fire the rules in the investment subsystem (rules1 and 2). Asa
result, in dl stuations, the rlevant rulesfire. The determination of which rulesfire under various
decison table conditions is determined by the rule/decision table relation constructed using rules 1, 2,
3¢, 4, 5d, and 6. Comparison of these rules with the decision tables, asillustrated above, complete the
proof that the Clips system implements the decision tables.

\erifying a System based on Sate Diagrams
The State Diagram Relation

Following is atable that represents the example state diagram implemented in procedural pseudocode
in the VVE Handbook:

State: Actions Condition Actions Next State

Start: _

start distance ahead too _ distance too
amall sndl

start gpproaching desired approaching
exit desred exit

start clear road ahead _ clear road

start default snd| dday start

clear road: _ current speed < increment speed, start

0



desired speed snd| dday

clear road default amdl dday start
distance too small desired speed and pass, smdl dday start
passing possible
distance too small default decrease speed, start
sndl| dday

exit: return info to
cdling program

The dtate diagram table has the following meaning:

STATE : ACTIONS names the state and lists actions that are taken when the state is entered. For
example, exit : return info to caling program means that on entry to the state exit, return info to calling
program is executed. When there is no action to be executed, The dash (-) is used after the State name
when there is no action to be executed.

CONDITIONS denotes the entry conditions for a path from the current state. For example, the entry
condition for the 2nd. path from the start Sate is distance too small. Peathsfrom astate aretried in the
same order aslisted in thetable. default may be used for the last path from a state to indicate that that
path is dways taken if none of the earlier paths are.

ACTIONS denotes the actions taken once the conditions for a path have been satisfied. These are
actions that are to be performed when transitioning between a particular pair of states. For example,
the actions increment speed, small delay are performed when taking the sart path from clear road.

NEXT STATE denotes the next state to go to. For exampleif the test distance ahead too smdll is
satisfied, the state distance too small is entered.

Showing Code Implements the Diagram Relation

To show that the program implements this Sate diagram, it is necessary to show that for each row in
the state diagram table:

1. Thereiscode that implements the row.
2. That codeis executed whenever the state for the row occurs.
3. Nothing elsein the program interferes with the code implementing arow.

Condition 1 follows from the fact that there is a branch in the code for each row inthetable. A
complete verification would identify the computationa path for each row. To illustrate the technique,
congder the row with the following vaues.
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State = clear road

condition = current peed < desired speed
actions = increment speed, small delay
next state = start

There is a case statement branch corresponding to the clear road state. Both asmall delay and setting
the next state to Start are executed whenever the clear road branch is entered, using the definition of
sequentid statement execution in procedura languages. Using the definition of if in procedural
languages, increment speed is executed whenever current speed < desired speed.

Condition 3 follows from the following two facts:

1. All codein the case statement implements some row in the table

2. The codefor each row is executed only when the conditions for that row are satisfied.
Whoops -- A Bug!

In attempting to verify Condition 2, abug in the code is found. The code for the exit Sate is never
executed. Thisis because the condition for exiting the while loop succeeds whenever the sate
becomes exit. Even worsg, the only return statement for the code occursin the erroneoudy non-
executed code for the exit state. Asaresult, the code shown here could return undefined vauesto its
caling context, propagating errors up through the program in which it is used.

The solution to this bug is to move the return statement to just below the while statement. Were this
done, Condition 2 would be satisfied.

The above bug was not planted, but represents a bug in the code that the authors did not catch before
writing this section. The fact that the bug was found while trying to carry out a verification proof
illustrates that the proof process exposes bugs by causing the devel oper to examine code greater detall
than when he or she merely inspects the code.
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7.VV&E for Small Expert Systems

Small expert systems are those for which direct proof of completeness, consstency, and specification
satisfaction are practical without partitioning the knowledge base. This chapter discusses techniques
for these proofs.

The basic method for verifying properties of smdl sysemsis.

1. Represent the property to be verified asalogica formula

2. Veify thelogicd formula using one of the following techniques:
Verify the formula on a case-by-case basis, e.g., by checking each Hoffman Region.

Apply Boolean dgebrasmplifications to verify the formula

Completeness

To verify completeness the user must demondirate that for al inputs, the expert system produces some
concluson. Thisisdone by:

1. Congructing alogica formula that represents conditions under which the system is complete; this
logica formulawill be caled the completeness formula.

2. Showing that the truth value of that formulais TRUE.

If the expert system E is Cartesian, i.e,. it isrequired to produce vaues of more than one variable, then
the completeness formulafor E isthe AND of the completeness formulas for syslems which set each of
the required output variablesfor E.

For asystem E that is required to take one of some set of actions a pseudo-variableis created of which
values are the enumerated set of acceptable actions. Then the completeness formulafor E isthe
completeness formulafor asystem that outputs the vaue of thisvariable.

The completeness formulafor an expert system in E which setsa single variable v is constructed by an
iterative substitution process from an initid formula. That initid formulais:

(v=el) OR(v=€e2)OR..OR (v=en) (7.2)
wherev = @ isan expresson from arule conclusion that setsv.

It is generaly not possible to establish the truth of (7.1) directly. However, the user can build a
formulathat expresses the truth of (7.1) in terms of the input variables of the system. To build this
formula, the user needs the following hypothesis function on atcomic logical formulasin E:
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Let X be aformulaof the form,
VARIABLE =VALUE
If thereisarulein E containing X inits concluson,
H(X) = OR( Hi(X))
where Hi isthe hypothesis (if part) of arulein E which contains X in its then part.
Otherwise H(X) = X.
Using the function H, one can define alogica formulathat expresses (7.1.) in terms of input variables:
Let FO be avariable over logicd formulas.
FO=(8.1);
while
( FO contains an atomic formulafor which H(X) = X)
F = the result of substituting H(X) for X inf;
return FO;

The resulting logica formula, which will be caled COMPLETENESS, expresses completenessin
terms of input variables to the expert sysem E. E iscompleteif the truth vaue of thisformulais
TRUE. To provethat COMPLETENESSis TRUE:

1. Write COMPLETENESS in conjunctive normal form.

2. Eliminate OR’s containing logica opposites or al possible vaues of avariable.

If the resulting logica expression is TRUE, the system is complete. If the resulting logical expresson is
something else (cdl it COMPLETEQO for discussion purposes), then COMPLETEO expressesthe

conditions under which the system produces a conclusion. Although not logically true, COMPLETEO
may be true because of mathematical theorems or domain knowledge.

Alternatively, NOT COMPLETEO may be satisfigble. In this case, the expert system E is not
complete.

Figure 7.1 below illustrates the above explanation of completeness.

Completeness of Investment Subsystem
To show the completeness of the investment subsystem (call it INV) of KB1, the first step is to
construct the formula (7.1) for INV:




investment = stocks OR investment = "bank account” (7.1.9)
Expressng thisin terms of input conditions gives

("Rik tolerance” = high (7.1b)
AND "Discretionary income exigts' = yes)
OR

("Risk tolerance’ = low
OR "Discretionary income exists' = no)
Writing thisin conjunctive norma form gives
("Rik tolerance” = high (7.1.0)
OR "Risk tolerance’ = low
OR "Discretionary income exists' = no)
AND
("Discretionary income exists' = yes
OR "Risk tolerance’ = low
OR "Discretionary income exists' = no)
Thefirst term is TRUE because high and low are the only possible values for risk tolerance. Likewise
the second term is TRUE because yes and no are the only possible vaues for discretionary income
exigs. Therefore, the formula expressing completeness of INV iSTRUE, and INV is complete.

Figure 7.1: Completeness of Investment Subsystem

Congistency

To verify consstency, the user must demonstrate that for all inputs, the expert system produces a
consistent set of conclusions, i.e., that for each set of possible inputs, dl the conclusions of the expert
gystem can be true at the sametime. (Asnoted in an earlier chapter, determining which sets of possible
conclusions are consgtent generaly requires expert knowledge.)

To establish consstency, the user must do the following:

1. Congruct a logica formula that represents conditions under which consstency fails; this logica
formulawill be called the consistency formula.

2. Show that the truth value of that formulais FALSE.

For asystem E that isrequired to take one of some set of actions, a pseudo-variable is created whose
vaues are the enumerated set of acceptable actions. Then the consistency formulafor E isthe
congstency formulafor a system that, perhaps among other things, outputs the vaue of this variable.

If there are no sets of incongstent possible outputs, the system is consstent. Some expert systems are
designed to recommend a set of components of a solution, and no one component contradicts any
other. An investment advisor who recommended to each investor a set of desirable investments would
be an example of this. For such systems, consstency is not an issue.
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Let 11,...,In be the sets of mutualy inconsistent possible conclusions of E. Each | consists of some set
of conclusions, eg.,

li={Ci{, ..., Ci(mi)} (7.2
where the Cs are possible conclusions of E.
The consastency formulafor Eis

F(11) or F(12) ... or F(In) = FALSE (7.3)
where

F(li) = Ciland ... and Ci(mi) (7.4)

It is generally not possble to establish the truth of (7.4) directly. A formulacan be built, however, that
expresses the truth of (7.4) in terms of the input variables of the system. Just as for completeness, this
formulais constructed by substituting the OR of rule hypotheses that infer a conclusion for that
conclusion. Subgtituting the hypothesis function (7.2) into (7.4) using the iterative agorithm (7.4)
constructs the consistency formula.

The resulting logica formula, which will be caled CONSISTENCY , expresses congstency in terms of
input variablesto the expert syssem E. E isconsstent if the truth value of thisformulaisTRUE. To
provethat CONSISTENCY isTRUE:

1. Write CONSISTENCY in digunctive norma form.
2. Eliminate ANDs containing logical opposites or other contradictory sets of conjuncts.

If the left hand side of the resulting logical expression is FALSE, the system is consistent. If the
resulting logical expression is something else (call it CONSISTENTO for discussion purposes); then
CONSISTENTO expresses the conditions under which the system produces possibly contradictory
conclusions. Although not logicaly false, CONSISTENTO may be false because of mathematical
theorems or domain knowledge.

Alternatively, CONSISTENTO may be satisfiable. In this case, the expert system E is not consistent,
and isinconsstent for the inputs which satisty CONSISTENT().

Consstency of Investment Subsystem:

To show the consistency of the investment subsystem (call it INV) of KB1, the first step isto construct
the formula (7.2.3) for INV. Theonly set of inconsstent conclusionsis.

{investment = stocks, investment = "bank account'} (7.2.9
Therefore, (7.2.3) for INV is:
investment = stocks AND investment = "bank account” (7.2.b)

To show INV is consstent, one must show that (7.2.b) isFALSE.
Expressng thisin terms of input conditions gives:
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("Rik tolerance”’ = high (7.2.0)
AND "Discretionary income exigs' = yes)

AND

("Risk tolerance’ = low
OR "Discretionary income exists' = no)

=FALSE
Writing thisin digunctive norma form gives:
("Rik tolerance”’ = high (7.1.d)

AND "Discretionary income exigts' = yes)
AND "Risk tolerance' =low )
OR
("Rik tolerance” = high
AND "Discretionary income exigts' = yes)
AND "Discretionary income exists' =no )
=FALSE
Thefirst term is FAL SE because high and low are contradictory valuesfor risk tolerance. Likewisethe
second term is FALSE because yes and no are contradictory vaues for discretionary income exists.
Therefore, the left hand side of (7.1.d) isan OR of FALSE's, and isFALSE. This establishes the truth
of the consistency formulafor INV, and therefore INV is cons stent.

Figure 7.2: Congstency of | Subsystem

Specification Satisfaction

While the vast range of possible specifications (as well as the Goedd Incompleteness Theorem makes it
impossible to give agenerd method for proving specifications, there are some particular kinds of
specifications where certain methods are useful.

Many valid specifications are not directly provable because they are not expressed in the variables and
propositions used for the knowledge base. Before a pecification can be proved it must be trandated
into the variables and relations used in the knowledge base. Trandating specifications into the
language of aknowledge base requires expert knowledge. Furthermore, this trandation process may
expose conditions under which the specifications are violated.

Step 1: Find all the possible conclusions that are constrained by the specification.

Step 2: Show that each of these conclusions are only made when permitted by the specification; i.e.
for the specification S, and each conclusion C identified in Step 1,

If C then S(C) (7.5)
where S(C) isthe reault of subgtituting the variable values contained in C into S.

Let EC be the conditions under which the expert syslem E concludes C. EC is computed by procedure
(7.5) above. Suppose:
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EC implies S(C) (7.6)

Then whenever C occurs, i.e., when EC istrue, S(C) isaso true. On the other hand, if expert
knowledge causes one to question (8.6), there is reason to think that the expert system can conclude C
when S(C) isfase.

Figure 7.3 shows a reasonable specification for Knowledge Basel.

A reasonable specification for KB1 isthat it never recommend an unaffordable investment.
Step 1: The conclusion, investment = stock, is an investment that might not be affordable.
Step 2: Formulate how each conclusion is affected by the constraint, e.g.,

Expert system concludes "investment = stock™ implies stock is affordable.
The successve subdtitutions of H(X) for X in this satement, using algorithm (7.4), produce a
succession of ever more detailled statements about when the specification is true.  For INV, these
Statements are:

If "Risk tolerance’ = high

AND "Discretionary income exists' = yes

the stocks are affordable.

If ("Do you buy lottery tickets' = yes (7.3.9

OR "Do you currently own stocks' = yes)
AND
("Do you own aboat" = yes (7.3.b)
OR "Do you own aluxury car" = yes)

THEN the stocks are affordable.
The truth of these statements depends on expert knowledge. If experts doubt any of them, it is
probably because the conditions found in KB1 under which it concludes investment = stocks, are not
aufficient to guarantee the specifications. In fact, (7.3.8) seems plausible while (7.3.b) seems wesk.
Thisindicates that the conditions for concluding the intermediate hypotheses,

If "Risk tolerance’ = high

AND "Discretionary income exists' = yes
are not completely expressed in KB1.

Figure 7.3. Example Specification for KB1

Foecification Based on Domain Subsets

Many specifications are of the form:
If theinput isin some &t S, (7.7
then the output satisfiesalogical formula P.

where Sis defined by alogica formula C(I) over the input variables, and B(CL,...,Cn)) isaformula
built over the conclusions, Ci, of the expert system; i.e. (7.7) becomes:
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If C(1) then B(C1,....Cn) (7.8)

To prove specifications like (7.8), symbolic evaluation of the knowledge base isauseful technique; the
user can try to prove (7.8) by symbolic evauation using either forward or backward chaining. With
these proof methods, the user smulates the inference engine operating on inputs using the knowledge
base. However, instead of actua input values, the only thing known about the inputsis that they satisfy

C(Il). Thismay be enough, however, to establish that the if a position of some of the rulesare

sdatisfied, then the conclusions will be derived within the said part of therule. If s0, these conclusons
have been proved true on the basis of the assumptions, C(I). Further reasoning may lead eventuadly to

showing that B istrue.

Hereisaforward chaining agorithm to prove B given C(1):
1. AssumeC(l)=TRUE. : (7.9
2. If thetruth value of B can be established using known information,

do so and goto X.
3. If theif part of aprevioudy unsatisfied rule can be satisfied,

then set the then part of the ruleto TRUE and goto 2

else quit, faling in the attempt to prove B.
4. If Bistrue,

then the specification has been proved
dseif Bisfdse
then the specification is not satisfied.

Here isthe backward chaining agorithm:
1. CURRENT =if C(l) then B(CL,....Cn). (7.10)
2. If thetruth vaue of CURRENT can be established, do so and quit with the following resuilt:

If CURRENT istrue the specification has been proved,

but if CURRENT isfalse, the specification is not true.
3. If thereisan atomic formula A for which H(A) 1= A (see 7.2)

subgtitute H(A) for A in CURRENT,;

Goto 2.
4. Quit with fallure to establish the specification.

Figure 7.4 shows the symbolic evaluation of the KB1 example from chapter 5.
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To illugtrate symbolic evauation, the following specification will be verified on the origind KB1 of
chapter 5:

If current savings < $3000, recommend that the investment is savings account. (7.4.a)
To prove the requirement, one assumes the condition:
"Savings balance" < $3000 (7.4.b)
and triesto prove that the expert system concludes that:
investment = "bank account". (7.4.0

The strategy for carrying out this proof is to use a modification of the expert system's inference engine.
It must be assumed that the inference engine makes inferences according to the rules of propositiona
logic. Itisleft to the scheduling strategy programmed into the inference engine to determine which of
al the possible inferences that could be made are in fact made. For illustrative purposes, a backward
chaining Strategy is assumed.

Using a backward chaining strategy to prove that the expert system concludes 7.4.c, the user sarts
with that conclusion and shows that it is satisfied. The only way to do thisin Knowledge Base 1B isto
satisfy the "if" part of Rule 2. These conditions are true whenever

"Discretionary income exigs' = no. (7.4.d)
Rule 6 makes this concluson whenever:

"Savings baance" <= $3000. (7.4.)
30 (7.4.9) follows.

Notice that this proof mimics the inference engine of the expert system. In fact, every step of the proof
could be carried out by the inference engine except for the last step of concluding (7.4.8). However, a
modified inference engine could carry out that step if, whenever a truth vaue for an inequdity was
needed, a knowledge base about inequalities was consulted. In fact, such a knowledge base appearsin
the appendix of this chapter, and contains arule that says

If X<=C then X<C.

Using this rule, a modified inference engine that consults an knowledge base about when atomic
formulas are true is able to automatically prove the desired condition (7.4.8) about the knowledge
base.

Figure 7.4: Symbolic Evaluation
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The main differences between actud and symboalic inference engines are:
Actud inference engines collect actua vauesfor variables and use them in evauating the
conditions of rulesto seeif those rulesfire.

Symbalic inference engines have available logica conditions about the vaue of variables, eg., the
hypotheses C(1). Symbolic inference engines use this known information to infer whether atomic
formulasin rule hypotheses are true or false. 1n an appendix to this chapter appear rulesfor
symbolicaly determining the value of some arithmetic atomic formulas.

To congtruct a symbolic inference engine from an actua inference engine, the function that determines
the truth of atomic formulas is replaced, but leaves the rest of the inference engine code intact. The
actual inference engine determines the truth of atomic formulas by:

Looking up the actua vaues of variables.
Subgtituting them into the atomic formula
Determining the truth vaue of the result.
In asymbolic inference engine, the user can aso evauate atomic formulas when only conditions about

variable vaues are known, but the actua values are unknown. The symbolic inference engine evaduates
atomic formulas by:

Assuming the known conditions about the variablesin the knowledge base.
Using thisinformation to establish the truth of the atomic formula.

To build a symbolic inference engine requires the user to replace the function for the actua evauation
of atomic formulas with afunction for symbolic evauation, and to leave the rest of the inference aone.

Figure 7.5 ligt the steps involved for the actud inference engine.

Actual inference engine For KB1, suppose the user said that his or her savings balance was $2000.
Then the truth vaue of the atomic formula:

savings balance < $3000 (7.5.9
can be determined by substituting in $2000 for "savings balance" to produce:
$2000 < $3000 (7.5.b)

Thisinequdity is seen to be TRUE.
Symbolic inference engine: Suppose that:

"savings baance" <= $2000 (7.5.c)
isknown to asymbolic inference engine. The symbolic inference engine triesto prove:
"savings baance" <= $2000 (7.5.d)

IMPLIES "savings balance" <= $3000
This formula is seen to be true. In fact, usng the following row of the table in the gppendix for

evauating atomic formulas,
ATOMIC FORMULA TRUTH CONDITION FALSE CONDITION
[ab]=<c b<=c a>C

one may conclude (7.5.d).

Figure 7.5: Symbolic Inference Engine
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Effect of the Inference Engine

The consstency and completeness techniques and the forward and backward symbolic inferences
engines presented so far in this chapter are based on the assumption that fairly standard inference
engines are used in processing the expert system knowledge base. These standard dgorithms are
capable of making dl the inferences of propositiond logic. Inference engines can depart from these
agorithms by either error or design. For example, an inference may stop inference after the first
knowledge base conclusion.

The most probable effect of departures in the inference agorithm from the stlandard is that the inference
agorithm makes fewer inferences than the standard algorithm. An inference engine error of
commission, afase inference, ismore likely to be found during testing of the inference engine, while an
omitted inference is harder to detect.

Consstency: Omitted inferences do not affect the above methods for finding consistency. The
omissions merely mean that there are fewer conclusions to be inconsistent than expected.

Completeness: Omitted inferences do affect completeness. The omitted inferences may cause the
inference engine not to make an expected concluson. Where the inference engine is known to omit
some propostiona logic inferences, it is suggested that completeness be verified using a symbolic
verson of the same inference engine used on the knowledge base, incomplete though its inferences
may be.

Satisfaction Of Specification: Specifications can be verified usng symbolic versons of the same
inference engine used to run the knowledge base. This provides the best insurance that the inference
engine will actudly make inferences that correspond to those made during the proof of the specification
according to the rules of logic.

Inference Engines for Very High Reliability Applications

For applications where very high reliability isrequired, it is essentid that the inference engine be known
to make correct inferences. CLIPS (C Language Integrated Production Systems, first released by
NASA in 1988) isthe only expert system shell clamed to have a certified correct inference engine.

In order to know that an inference engine makes correct inferences, it is necessary that the inference
engine be proven correct. One possible standard of correctnessisthat the inference engine makes dl
inferences possible with propositiond logic given the information gathered from the user and other
sources. This, or an dternative standard, should be proved by carrying out aforma correctness proof
on the source code of the inference engine, practica only for small, smple ones.

On the basis of this or other proven description of inference engine behavior, agorithms can be
congtructed like those shown in this chapter for consistency, completeness, and symbolic evauation for
specification satisfaction.
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In order to carry out in practice a correctness proof or equivaent description of the inference engineiit
is necessary that both the source code of the inference engine be available and short and Smple enough
to allow a proof to be carried out, given the primitive state of program correctness proofs.
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8. Validating Underlying Knowledge

If there are errorsin the knowledge from which a knowledge base is built, there will usudly be errorsin
the performance of the expert system. This chapter discusses methods for validating the knowledge
from which aknowledge base is built.

Introduction

If there are errorsin the knowledge from which a knowledge base is built, there will usudly be errorsin
the performance of the expert syssem. There are several waysthat the KB can come to represent
incorrect knowledge:

The expert(s) provide incomplete or incorrect knowledge.
The knowledge engineer failsto correctly understand or code the expert's knowledge.

Formalizations of knowledge, e.g. using the range of avariable to test for some underlying
condition, may fail to capture al instances of the underlying condition.

There are two kinds of validation that must occur on aknowledge base: logical and semantic. Logica
validation checks how the rules and objects work together to reach logicd conclusions. In particular,
logicd vaidation checks for consistency, i.e., that al the conclusions of the knowledge base can be true
a thesametime. Logica vaidation aso checks for completeness, i.e., that the knowledge base
reaches a concluson for dl inputs. While earlier chapters of the Handbook focused on logica
completeness and consstency, this chapter addresses semantic correctness and compl eteness.

Logical completeness and consistency are necessary for a knowledge base to be vdid. However,
logical completeness and consistency are not sufficient for knowledge base validity. For example,
Knowledge Base 1 in the Introduction islogically complete and consistent; it contains no logica errors.
However, KB 1 makesinvestment decisions based only on risk tolerance and discretionary income. It
uses no information about actual income, debt, fixed expenses, age and other important inputs to good
investment decisions. In other words, while KB 1 islogically correct, it is serioudy semanticaly
incomplete. To be vdid, aknowledge base must be semantically complete, i.e., it must base its
decisons on dl information consdered to be relevant by the expert.

An exception isthat thorough testing (see Chapter 10, “Testing”) may show that some information can
be left out without affecting performance. However, knowledge that the expert thinks is needed
should beincluded until testing shows that an expert system performs correctly without that
knowledge.

Similarly, aknowledge base can be logicaly consstent but not semantically consistent for its intended
gpplication. Semantic consistency occurs when al facts, rules, and conclusions of the knowledge base
aretrue for the gpplication for which the expert system isintended. To illustrate the difference between
logica and semantic consistency, consider ordinary Euclidean and spherical geometry. Both are
logicdly condstent mathematica systems from which logicaly consstent expert systems can be built.

105



However, for everyday life, Euclidean geometry is consstent and spherical geometry isincons stent
with observed facts, while for long distance navigation, the reverseistrue.

It isimportant to note, however, that a knowledge base that islogically inconsistent by definition gives
contradictory advice and is therefore semanticaly incorrect. Likewise, a knowledge basethat is
logicaly incomplete fails to provide a solution under some circumstances, and is semanticaly
incomplete. Logical completeness and consistency are prerequisitesfor sesmantic validation of a
knowledge base.

Validating Knowledge Models

Knowledge models are used as amagjor component of correctness proofs, but these proofs are
worthlessif the underlying knowledge about the application domain isfase in the domain. Therefore,
it isimportant to validate the knowledge models with domain experts.

There are severd ways to validate a knowledge modd:

Use a knowledge modd from a standards document in the domain. The standards process that
created the model can be assumed to have vaidated the knowledge in the standard.

Create aknowledge modd through the joint development and consensus of ateam of recognized
expertsin the domain. For example, the knowledge base for Quick Medica Reference, an internd
medicine advisor, was created by a series of specidized consensus committeesin very specidized
fields (eg., Hepatitis B). The knowledge model created in thisway can be assumed to contain the
best available expertise, and the participation of multiple experts increases the chances that one of
them will catch any error that creepsinto their discussons.

Create aknowledge mode with asingle expert and review the knowledge modd with other
experts.

When creating a knowledge model using asingle expert where correct performanceiscriticd, itis
important to validate this knowledge with outside experts not connected with development of the
modd. The following steps detail the vaidation process of the knowledge modd:
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Present the knowledge modd to the outside experts. In some Stuations it may be advisable to
have someone other than the domain expert, author of the knowledge model, do the presentation,
to ensure that professional courtesy does not interfere with critiquing the knowledge model.

Collect al questions, comments, and objections to the knowledge models, or parts thereof.
Sort and organize these comments into questions about parts of the knowledge modd.

Organize the questions into a cultural consensus test (see the following sections) to vaidate
individud items.

Give the test to the outside expert, to determine the extent of agreement on each of the items.

If some of the items are not validated, perform additional knowledge acquisition and modification

of the modd to resolve the problems pointed to by the invalidated items. This may include
additiond discussons, bringing in more experts, literature searches, or redoing parts of the mode.

Note that in validating the knowledge mode, or in other knowledge validation activities, it is
important to ensurethat the specialized expertise of expertsused in validation cover the
intended domain of the expert syssem. Most technica fields today are too big and complex to be
mastered in their entirety by asingle expert, or even afew experts. Therefore, in critica gpplications, it
isimportant to vaidate every part of the knowledge base with expertsin that particular specidty. An
example of this careful validation was the construction of the Quick Medica Reference expert system
for internal medicine, and its predecessor systems Internist and Cadeusius. Although the find system
contained nearly athousand diseases, groups of specidistsin particular diseases (e.g. hepatitis B) were
brought in to collectively discuss and vaidate the knowledge base in their particular area of specid
expertise.

After performing these vaidation stepsiit isimportant to assess the performance of the domain expert
(seethelater section, Overall Agreement Among Experts). If the current domain expert differsfrom a
consensus of other domain experts, then there are two possible courses of action:

Replace the domain expert with one who represents a consensus of current domain knowledge.

Continue the expert system with the disputed knowledge model, with the redization that the
system will not reflect a consensus of expert knowledge. Inthiscaseit isunlikely that the system
will perform in away that matches a consensus of domain experts. Continuing development isa
legitimate course in experimenta or non-critical systems but is not advisable in critica expert
systems.

An expert system containing knowledge which has not been validated should be used only for
applications where there is no serious consequence of an error by the expert system.

Validating the Semantic Consistency of Underlying Knowledge Items

Even if the expert knowledge has been properly encoded into an expert system knowledge base, the
KB will probably produce errorsif the underlying expert knowledge iswrong. Therefore, itis
important to validate the expert knowledge behind the knowledge base. Thisis particularly important
because there are a number of ways in which errors can cregp into the knowledge on which an expert
sysem ishbuilt. Some of these errors are:
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The expert iswrong or out of date; in fact, al experts are probably wrong or out of date on afew
points.

The knowledge base was correct when written, but knowledge has changed.

The knowledge engineer misunderstood the expert.

Errors were introduced in maintenance.

When a given afact that has been encoded into the knowledge base, how can one validate that this
represents correct expertise? One gpproach isto do an experiment so that:

One outcome is expected if the fact represents currently accepted expertise.

Another outcome is expected if the fact does not represent currently accepted expertise.

Thereisadatistica test that discriminates to an acceptable leve of confidence between these two
Cases.

The specidty of cultural consensus within anthropology provides techniques for validating knowledge
inagatisticaly rigorous manner. These techniques can be gpplied to knowledge validation for
knowledge bases as explained below.

The basic method for vaidating aknowledge item is:

Ask apane of expertswhether it istrue or false.
Tdly the TRUE/FALSE answers.
Anayze the results gatistically.

Creating a TRUE/FALSE Test

In asking the experts to decide if the knowledge item istrue or falsg, it isimportant not to bias them by
letting the expert know which answer agrees with the current assumption in the knowledge base. Do
not, for example say, "Y ou agree with this, don't you?'. To present the itemsfor vaidationin a
context in which both TRUE and FALSE are apriori equdly likely, disregarding the truth of the
item(s) being tested, do the following:

1. Start with a collection of TRUE/FALSE questions about half of which are true and haf of which
are fdse, and which are about the domain of the knowledge base. It is important that these
environment-creating questions are indistinguishable by the test taker from the questions that
actualy test KB knowledge.

2. Scatter TRUE/FALSE questions that actudly test KB items throughout the list of environment-
creating questions.

3. Adjust the test if necessary so that TRUE and FALSE have approximately equal probabilities of
being right.

Although this method is adequate for the purposes of this handbook, more detailed information about
constructing unbiased tests can be found in literature about survey and test design.
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Giving the Test

In applying the cultural consensus method to knowledge base vaidation, there are some issues that
must be handled carefully to get maximum information from thetest. First of dl, the knowledge
engineer must redlize and explain to the experts that it is not they but the knowledge base that is being
tested. Theitemson the test represent assertions on which the knowledge base is based, and these are
being vaidated by experts. The reason for usng multiple expertsis not alack of confidence in any one
expert, but a desre to validate assumptions made in the knowledge base to a satisticaly sgnificant
confidencelevel. Itisimportant to explain thisto al the experts used in knowledge base vadidation to
ensure that no hogtility toward the knowledge engineer or the project develops. Such hodtility that
would rob the project of valuable contributions to the knowledge base by the expert.

Secondly, the experts used for vaidation should be carefully ingtructed to call an item faseif it is not
awaystrue. Thisisto guard against the very red possibility that some of the rulesin the knowledge
base have entry conditions that are too broad. Thetest can even be given in aform where there are
three answers to each question, TRUE, FALSE and SOMETIMES TRUE. SOMETIMES TRUE and
FALSE can be combined as FALSE, i.e,, the item was not considered true, when the test is scored.

Formulating the Experiment

Once the test for the knowledge base items has been written, an experiment must be constructed using
the test resultsto validate the items. To do this, the test must be given to agroup of expertsto
evaluate and score the results.

The test must be given to enough experts so that the correctness of each knowledge item based on test
results can be distinguished from chance test results. Following isa smple statistical method to
vaidate knowledge base items.

Analyzing the Test Results

A knowledge base item is Setidtically vaidated if:

A mgjority of the experts answer that the KB item istrue (or otherwise supply the test answer(s)
that one would predict under the assumption that the experts think the KB item istrue).

The mgority is so overwheming that if the experts did not think the KB item was true, the chance
of having resultsthat at least this strongly suggest a belief in the KB item isless than some
preassigned threshold, traditionally 5 percent or 1 percent.

Table 8.1 shows the chance of finding unanimous agreement given the "null hypothess™ that the
experimental results are due to chance rather than belief in the KB item.

Table8.1: Confidence Levd

NUMBER OF EXPERTS CONFIDENCE LEVEL
1 50%
2 75%
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4 9A4.75%

5 96.88%

6 98.48%

7 99.22%

N 1-1/2**N

Thismeansthat it is probably a good ideato ask at least four experts to verify each important
assumption backing up the knowledge base. When four or more experts agree unanimoudy, the
assumption isreasonably vaidated. Six to seven experts agreeing provides ahigh leve of confidencein
the assumption.

Table 8.2 shows the confidence levels results when one expert disagreeing with the rest of the group:

Table8.2: Confidence Levelswith One Expert Disagreeing

NUMBER OF EXPERTS CONFIDENCE LEVEL
0%
25%
50%
68.75%
81.25%
89.06%
93.75%
96.48%
98.05%
98.93%
99.41%
99.68%

P OO~NO OIS, WN PR

el
N -~ O

This means that when one expert out of eight disagrees the KB item is vaidated to areasonable level
and isvadidated to ahigh level when one expert out of ten disagrees.

In generd, if there are N experts of which M disagree, the confidence level achieved by thislevel
agreement is.

1-(1/2**N)* SUM( m=0to M)combinationsM,N)
where combinations(M,N) is the number of combinations of M objects chosen from N.
Thisis computed by:

combinations(M,N) = M!*(N-M)!/N!
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where K! isthe factoria of K.

Overall Agreement Among Experts

The above method of validation based on cultural consensus rests on an assumption that the experts
share the same basic knowledge, i.e., the sameideas about how to solve the problems covered in the
knowledge base, and are validating the specifics of that common approach, as expressed in the
knowledge base. Sometimes, however, experts do not agree in their basic knowledge and approach to
aclass of problems. To detect whether dl the experts take the same basic approach to problem
solving, observe the following:

1. Clugter theexperts Represent each expert as the vector of answers on the TRUE/FAL SE test.
Find aclustering of the experts based on these vectors.

2. Ted for amilarity: Test to seeif dl the experts belong to the same cluster.

2a. Common cluger: If dl the experts belong to the same clugter, then the computation of item
confidence presented above remains valid.

2b. Morethan onecluster: If thereis morethan one cluster among the experts, andysis of the
differences among experts must be conducted, as discussed below. Then the culturd
congstency of individua KB items should be retested.

For the smal number of expertsthat areinvolved in validating a knowledge base, clusters of experts
can be determined by hand inspection of the correlation matrix of test answer smilarity of experts.

Approaches to Disagreement Among Experts

When experts do not agree, as evidenced by the existence of more than one cluster of experts, the
following approaches are useful:

1. Throw away outliers. If it can be determined by interviewing other experts that an expert who is
not part of alarger cluster of experts represents alittle-held school of thought within their specidty,
and if the more mainstream approach represented by the large cluster of experts successfully solves
the problems for which the expert system isintended, eliminate the outlier expert from the
validation sample of experts.

2. Chooseavalid subset of experts: If two clusters of experts work from totaly different
assumptions, pick acluster that achieves optimal results and use them both as the source of domain
expertise and experts for vaidation. Do not try to include two conflicting schools of expertisein
the same knowledge base.

3. Usethe separate approaches as subsystems. If gpproaches represented by distinct clusters of
experts do better on different subsets of the target domain, it may be possible to build a system
where the differing gpproaches reside in separate expert subsystems. These subsystems could
participate in aweighted vote to determine an overal conclusion, where the weight given to avote
isthe heurigtically determined confidence factor that a particular subsystem can solve the problem
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under congderation. Since this approach leads to a more complex, expensve system, it should
only be used when the separate gpproaches are not adequate by themsalves.

4. Analyze disagreements. Two or more clusters of experts may be a symptom of unresolved

controversies within the professional speciaty supplying the expertise for the expert system. In this

case, the expert system development team needs to decide if there is enough agreement among
expertsto build an expert system that gives reliable advice in the domain for which it is intended.

Clues of Incompleteness

Cluesthat a knowledge base is semantically incomplete may exist within the knowledge base itself.
Oneisthat the knowledge base islogically incomplete. Another isthat variables, statements,
conclusions, etc., are defined but not used. This may indicate that an expert started to supply
knowledge that would use them, but never completed that part of the knowledge base. Therefore, the
entire knowledge base should be checked for items that are defined but not used, and each one of
these should be used or diminated on expert advice.

Variable Completeness

Variable completenessis a specid case of semantic completeness. A knowledge baseis variable
completeif it usesal of the important input variablesin making its conclusons. The stepsin checking
variable completeness are:

1. Determine and codify what inputs the KB uses in determining each variable and the truth of

conclusions.
2. Ask expertsto confirm the knowledge codified in Step 1.

There are two ways to determine and codify the variables used in making decisions.
Computerized andyss of the knowledge base.
Keeping careful knowledge acquisition and coding notes.

In either case, the god isto be able to formulate questions of the form:

The knowledge base currently uses variablesVV1,V2,V3..VN to decide X.
Arethere additiond variablesthat should bein thislist of inputs? What are they?
Arethereinput variables that are not needed? If so, then what are they?
Once these questions have been defined they should be presented to experts, possibly first to the
experts used in building the expert system, and then to independent experts. The process of asking

experts about input completeness should be continued until the variable set stabilizes. Then the
variable sets should be vaidated using the technique described above for knowledge item vaidation.
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Semantic Rule Completenessand Consistency

Once theinputs to making decisions have been validated, the actua rules that make each decision
should be vdidated. One problem in vdidating knowledge bases has been that the size of knowledge
bases and their relative lack of easily perceived structure makes them difficult for domain expertsto
read. To lessen this problem, the knowledge base can be partitioned into the pieces that determine the
vaue of each important variable and conclusion. Each such piece represents the knowledge in the
knowledge base about a particular subtopic of the domain, and some conclusion drawn from that
subtopic. The expert(s) is asked to examine each piece of the knowledge base separately, and answer
the following questions:

1. Istheinformation expressed in the rules that set the vaue of some particular variable or statement
correct?

2. Istheinformation complete? Or are there other conditions to consider, ether in individua rules or
as new rules?

By focusing the expert's attention on asingle variable at atime and the conditions for setting that
vaiable, alarge knowledge base is broken down into pieces that are easier to comprehend.

A backwards chaining strategy can be used to go through the variablesand statementsin an order that
islogica to an expert. Start with the overall outcomes of the knowledge base, and for each pull out al
the rulesthat set that conclusion. Validate theserules. Then do the same for rulesthat set the
conditionsin the"if" parts of vaidated rules. Continue the backward chaining vaidation process until
validated pieces cover the entire knowledge base. The question, "Isthis knowledge base piece vaid",
i.e., isthe information correct and complete, can be considered a knowledge item, and validated to the
desired leve of confidence using cultural consensus, as discussed above. For knowledge bases where
reliability is criticd, this piecewise vaidation should be carried ouit.

Validating Important Rules

Particular emphasis should be placed on validating rules that cover and appear to cover many inputs or
which process critical cases. Rulesthat appear to cover many cases are those with few atomic
formulasin ther "if" parts. These rules should be pulled out and vaidated by experts.

To determine which rules typicaly handle common cases the knowledge engineer in charge of
validation should collect a set of typicd input data from one or more experts. Each data setisrun on
the expert system, keeping track of which rulesfired in processng thisdata. Those rules are presented
to the expertsfor vaidation.

Exactly the same processis used to vaidate critical cases, data sets are gathered from experts, the data
sets run, and the firing rules validated by the experts.
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Validating Confidence Factors

Rule bases may contain assertions about the confidence of conclusions under various conditions, as
illugtrated by this rule from PAMEX:

if DS=14
and NOT Deterioration Cause Indicator = Structural Failure
and NOT Deterioration Cause Indicator = Westher Severity
and Skid Number = Low
and DV2>=15
and DV15< 30

then conclude Aggregate Spray, confidence = 0.8

and conclude Open Friction Course, confidence = 0.8.

A problem in validating the knowledge base is to insure that the confidence values are semanticaly
conggent. In particular, if three rules with many "if" conditionsin common have confidence values for
aconclusion of, for example, 0.9, 0.85 and 0.5, it isimportant to insure that the low confidence factor
isjudtified by domain knowledge. Either through a coding error, or because different experts supplied
the confidence factors, it is possible that the large differenceis an artifact of building the expert system.

The basic strategy for validating the confidence factorsis:

Predict the confidence factors for rule conclusions by estimating them heuristically from the
conclusion confidences of smilar rules.

Compare the predicted confidences to those actudly written into the knowledge base.
Vdlidate the confidences where the predicted and actual differ by more than some threshold.

The firgt step in implementing this vaidation congsts of rule smplification. The following rule
samplifications should be carried out before predicting confidence factors.

From arule of theform "if A then B and C", form tow rules, "if A then B" and "if A thenC", s0
that the confidence factors of B and C will be vaidated separately.

Normalize the relational operators by:

Replacing all < and<= operators with > and >= operators.

Replacing X>=Y with X>Y OR X=Y.

Replacing X!=Y with NOT X=Y.
Write the “if” parts of rulesin digunctive normd form, i.e,, asan OR of ANDs of atomic formulas
and negations of atomic formulas.
From arule of theform "if A OR B then C" form two rules, "if A then C" and "if B then C", so that
the two conditions A and B can be vaidated separately.

The predicted confidence factors are based only on rules having the same conclusion, i.e, to vaidate
the confidence factor of B in"if A then B", it isonly necessary to look at other ruleswith conclusion B.
Therefore, dthough the rule smplifications multiply the number of rules, partitioning by concluson
breaks the rulesinto subsets of manageable size.
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Confidence factors are assgned to atomic formulasin rulesin atwo-step process. Thefirst stepisto
assign confidence factors to the atomic formulaitsalf. The second step isto modify that confidence
factor if the atomic formulaisthe argument of aNOT. If an explicit confidence factor gppears with an
atomic formula, use that astheinitia confidence factor for the formulain arule. Otherwise, if an
atomic formulagppearsin arule, use 1 astheinitia confidence factor. If an atomic formula does not
appear in arule, use 0.5 asits confidence factor. Now, having defined confidence factors for the
atomic formulas themsdaves, modify them to account for NOT’ s asfollows: if an atomic formulawith
initia confidence C isan argument of NOT, its confidence is 1-C; otherwisg, its confidenceis C.

At this point, a confidence factor has been assgned to every atomic formulain every rule"if" part.
Giventwo rules, R1 and R2 for each atomic formula A, let A1, A2 denote the respective confidence
factors. Then define:

distance(R1, R2) = sgrt(SUM (atomic formulas A)(A1-A2)** 2)))

i.e., the square root of the sum of squares of difference between corresponding confidence factors.
Using this distance, an estimated confidence factor can be conducted by using a generdized regresson
neural network (GRRN), which is described in the appendix to this chapter.

In interpreting the differences between actua and estimated confidence factors, it must be decided how
much difference should trigger vaidation. Smal differencesof 0.1 and possibly 0.2 probably represent
expert judgments. Larger differences may indicate errorsin the knowledge base, but may also indicate
valid expertise. Confidence factors with large differences between predicted and actua vaues should
be vdidated in atwo-step process. Firgt validate the confidence factors with a single expert, e.g., the
project domain expert; secondly, if doubt remains, vaidate the confidence factors with multiple experts
using cultural consensus. Since differences may represent expert knowledge, if the expert vdidates a
confidence factor, it may be accepted asvalid, or a least asvalid as any other knowledge item supplied
by the expert. Like other knowledge items, the single-expert-validated confidence factors may be
further vaidated by multiple experts. However, most of these confidence factor differences reflect the
fine structure rather than the mgjor assumptions of knowledge bases, and the priority of validating most
of themissmadl. If the differenceislarge and the consequence of the differenceis judged to be serious,
however, the confidence factor should be vdidated by multiple outside experts.

Given that resources are dways limited, it isimpossble in practice to vaidate dl theitemsin a
knowledge base. Given the need to triage testing, it isimportant to note during knowledge acquisition:

which areas of the knowledge base are the most controversid among experts
which experts disagree most with their colleagues.

In addition, to select priority itemsfor testing, it isimportant to perform a hazard analysis of the system
containing the expert system. Thisanadysis should extend into the expert system, and define which
assumptions in the knowledge base are safety critical.

Given both generd aress of disagreement in the knowledge base, and priority aress for safety, the
knowledge engineer can et priorities for testing underlying assumptions. It is very important to test
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items that are both safety critical and prone to expert disagreement; a system that reasons correctly
from fase information islikdly to fall.
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9. Testing

This chapter discusses how a ample experiment can be designed to test whether an expert system
satisfies a specification.

Simple Experiments for the Rate of Success

The most common datistic measuring how well a system satisfies a pecification isto observe the
expected fraction of inputs on which the system will satisfy the specification. One can estimate this
fraction of an experiment based on the following steps:

1. Sdectadatasample.
2. Run the expert system on the data sample.

3. Anayzethe experimenta data

Selecting a Data Sample
Each specification for the expert system is of the form:
If the input satisfies certain conditions, then the output satisfies certain other conditions.

A sample of N dataitemsfor aspecification isaset of N dataitemsthat satisfies the conditionsin the if
part of the specification. Furthermore, the sample should satisfy the following additiona condition:

If x is avariable which is thought to affect the rdiability of the expert system on the specification,
the digtribution of x in the sample should approximate the digtribution of x in the underlying
population.

There are severd waysto collect asample:

random subsample: If asample of datawas put aside for testing during the initial phase of the system
lifecycle, the experimenter can draw arandom subsample from this sample,

monitoring: Potentia inputs can be collected from the environment where the expert system isto
perform. A subset of the observed inputs that satisfy the conditions of the specification to be tested
becomes the sample for the experiment.

generated input data: Where actual datais not available or practica, acomputer program can be
used to randomly generate data satisfying the input conditions of the specification.

The Sze of the sample that should be selected is estimated below.
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If a specification has been proved to be satisfied, the existence of the proof may increase the rdiability
achieved by atest. Thiseffect isaso discussed below.

Estimating a Proportion (Fraction) of a Population
If the expert system isrun on N dataitems, and it satisfies the specification on K of those items, then:

K/N = the experimenta point (i.e., Sngle number) estimate of the proportion of the underlying
population satisfying the specification

If the sample sze N is sufficiently large, the distribution of sample proportions (the values of K/N) is
gpproximately normal. This occurs when both the following conditions are true:

K =N*(K/N) > 5 (9.1)
N*(1-K/N) > 5

When thisistrue, the standard error of the proportionis
s &K/N) = sgrt( (K/N)*(1-K/N)/N) 9.2

When the conditions (9.1) for normality are not satisfied, the Poisson distribution, discussed below can
be used to egtimate the satisfaction of a specification.

The Confidence Interval of a Proportion

In this section the god isto find an interva of proportions (fractions) of a population since most of the
time the observed satisfaction of the specification for anew sample will beintheinterva. In particular,
the god isto find an interval such that the probability of the observed satisfaction being in the intervd is
(sat) for (sat) closeto 1.

The stepsin computing the interval are:

1. Conduct the experiment to test the specification. Observe:
The samplesizeN.
The number of timesK the specification was satisfied on the sample.
Conduct enough trias so that the requirements for approximate normality are satisfied.

2. Computes &K/N)

3. From adatigtical table, find the sandard normal deviate (snd) of sat, often called the "z-score” and
denoted by z.

The standard normal deviateisamultiple of the standard error marking out a central region of the
normal distribution that contains a given fraction of the total area (which is 1) under the normal
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digtribution. In particular, z(sat) is the number such that the area under the normal distribution between
-Z(sat) and z(sat) is s, i.e,

Z(sat)
I
INTEGRAL | normal (x)dx 9.3
I
-Z(sat)
where norma(x) is the stlandard norma distribution,
n(x) = (1/2*pi)* exp(-x"2/2) (9.4)

While thereis no closed form for z, tables of z-scores are widely available in Satistics texts; typica
vaues are shown below:

sat Z(sat)
50% 0.68
75% 115
90% 1.65
95% 1.96
98% 2.33
99% 2.58
99.5% 281
99.8% 3.08

When K successes are obsarved in N trids, the sat confidence intervd is

KIN +- z(sat)*s e(KIN) (9.5)

Choosing Sample Size

The god for asystem developer is often to show that a system will perform at least asreliably as some
threshold. Statistically, this means that with a confidence of at least C, a specification is satisfied in at
least fraction F of a sample on which the specification applies. A typicad statement of thisformis:

The expert system correctly diagnoses pavement maintenance remedies at least 90 percent of the
time with 95 percent confidence.

Thismeansthat if another experiment using the same sample size was conducted, at least 95 percent of
the time the measured fraction on which the specification is satisfied would be at least 90 percent.
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Given adesired fraction F and a confidence level C, the user can obtain the size of sample needed to
achieve these parametersin the following way:

1.

Conduct a smdl initid experiment to estimate the fraction on which the specification is satisfied.
This initia estimate will be denoted FO. If FO<F and the sample sze of the initid experiment
guarantees that there is reasonable confidence in FO, the expert system does not satisfy the
proportion F. If FO is equd or only dightly larger than F, the Size of the experiment needed to
narrow the confidence interval around FO to exclude F will be unreasonably large; in practice, it
will beimpossible to statisticaly vaidate the satisfaction with proportion F and confidence C.

Given that FO >F, compute:

s e= (FO-F/z(C) (9.6)

To achieve F and C, choose a sample size such that the standard error islessthan or equa tos e. This
means choosing an N such that:

grt( FO*(1-FO) /N ) =<s e (9.7)
or

N >= FO* (1-FO)/s_e"2 (9.8)
For example, if:

preliminary experimental proportion (FO) = 93%

minimum acceptable proportion (F) = 90%

confidence interval = 95%
then

S e=(93%-90%)/z(95%) = 0.03/1.96 = 0.153
and

N >= 93%* (1-93%) / 0.153"2 = 277.9

This estimate of sample size is gpproximate, because the preliminary proportion FO used in the

computation is only the result of a smal preliminary experiment, and will contain some random error.
Therefore, the experimenter should, if possible, design an experiment so that an initid experiment can
be continued by testing more data. Thisis possible provided that the probability of drawing any data
item in the continuation of the experiment is the same as drawing that dataitem in the initia
experiment.
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Estimating Very Reliable Systems

For systemsthat do not fail often it is difficult in practice to observe the five or more failures that
causes the proportion to be approximately normaly distributed. In this case the Poisson distribution
should be used as follows to estimate a confidence interva for the satisfaction proportion.

The Poisson distribution describes the number of occurrences of some random event in given interval
of time or region of gpace. For example, the number of fish over any square meter of alake, wherethe
lake bottom is uniformly attractive to fish, is gpproximately Poisson distributed.

The formal requirements for an occurrence to be Poisson distributed include:

Each occurrence isindependent of the others.
Each interva can potentialy contain an infinite number of occurrences.

In practice, the second requirement can be gpproximated if alarge number of occurrences can occur in
aregion; what is"large" for this purpose will be estimated below.

If the average number of occurrencesin aregion isL, the probability of finding k occurrencesis.
P(k) = exp(-L)* L k/K! 9.9

The probability of K or more occurrencesis.
SUM exp(-L)* L k/k! (9.10)
k>=K

a seriesthat converges geometrically once L/k < 1.

For testing a specification, aregion is defined to consist of N trids, where N isanumber such that N or
more occurrencesis very unlikely, as computed by (9.10).

The requirement that a specification is satisfied at a proportion at least F, means that
(N-Fall)/N > F (9.12)

where N isthe number of tridsin aregion, and Fail isthe number of fallures observed in N trids. This
means that the number of failures Fail should satisfy is.

Fail < (1-F)* N (9.12)

This says that the number of failures should be less than the acceptable failure rate, 1-F, timesthe
number of tridsin aregion. Using (9) the user can compute the probabilities of observing failure rates
satisfying (9.12). Denote the sum of these probabilities by

P=SUM P(K) (9.13)
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k < (1-F)*N

Then if P>=F, the expected successrateisat least F.

How a Proof Increases Reliability

Suppose that in a Hoffman region a specification has been proved and verified in a Single experimental
trid.

The question to be asked then is.

What is the probability that the specification would fail on a new trial with inputs in the Hoffman
region ?

By the definition of a Hoffman region, dl atomic formulas that determine the computational path of the
system have the same truth vaues for the inputs of the second trid. Therefore, the output on the new
trial should be identical to that of the first on which the specification was satisfied. The only way for
the outcome of the second trial to be different isfor a system error to have occurred. Therefore, the
probability of afailure on a Hoffman region for which both a proof and asingle tria experimenta
verification isavailable is the probability of an underlying computer hardware or system software error
occurring during the computation. Asthe Pentium bug illustrates thisis a small, but non-zero
probability.

In order for afielded system to perform reliably, the probability of a computer system error must be
kept smal. However computer system error probability applies gpproximately equally to al
knowledge bases. Therefore, once the underlying reliability of the computer system is established,
resources should not be expended testing for thiserror. In particular, where a proof exists, one
experimentad trial per Hoffman region is sufficient to verify a specification with probability 1-Fc, where
Fcisthe probability of acomputer system error.
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10. Fidd Evaluation, Distribution and M aintenance

Evauation, which includes field testing, addresses the issue "isthe system vauable?' Vaueisindicated
by the degree of end user approval, which in turn determines the extent of acceptance and use of the
expert system. Didtribution and maintenance of expert systems are addressed in this chapter.

Field Evaluation

Evauation isthe process of determining the likelihood that once deployed, the expert system will be
used whenever gppropriate. Evaluation should be an ongoing endeavor to help ensure maximum usage
of the deployed system. Pertinent issuesin evaluation are:

Isthe system user friendly and do the users accept the systlem?

Doesthe system give "correct” results and isthe logic of the system correct?

Does the expert system offer an improvement over the practices it isintended to supplement?

Isthe system easy to learn and to become proficient on?

Is the system useful as atraining tool?

Isthe system in fact maintainable by other than the devel opers?

Can the system be used in the intended work environment?
There are no universally accepted standards for the evauation of expert systems. In fact it may be
quite difficult to achieve. Sometimes evauation isignored until very late in system development.
However, there are some things which can be done to make the process more effective. First, for
systems under development, the developer should design for testing. For completed prototypesthisis
impossible, however workshops and substantia interaction with the target end users can make the

process of field testing much more valuable. It iscritica that the end users be kept aware of how
important their contributions are and that their efforts are greatly appreciated.
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Workshops and follow-up efforts with end users and experts can provide vauable
improvements to an expert system and incentives for itsuse. After the expanded prototype has
been constructed based on knowledge from the experts and end users on the development
team, aworkshop or series of workshopsinvolving alarger community of expertsand end
userswill usualy result in mgor improvements to the system. The participants should be
introduced to the computer program (expert system) and to the general concepts used in the
development of the system. During the workshops the knowledge structure and the
parameters used in the decison making process and their interrel ationships should be reviewed.
Expected benefits from workshops include:

A verification check, i. e. review and improvement of the logic used in developing the
sysem rules

Enhancement of the knowledge base, i. e. finding oversghtsin the rules and the
relationships between them

More user oriented and user friendly interface

Development of vested interest in the user community, i. e. establishment of acadre of field
users who want the system to succeed

A better and more useable system

As part of the evaluation process, the assumptions made during planning of the system should
be reexamined. For example during the planning process assumptions on the frequency of use,
avallability of input data, usefulness of system output, ease of use, etc. should have been
documented. These assumptions should all be tested during field trids.

While there may be no universally accepted standards for field evauation of expert systems,
steps smilar to those prescribed in Chapter 9, Testing, can improve the process. The big
difference between testing and eval uation is that testing focuses on the accuracy of the advice
given by the system while evauation focuses on the degree of user acceptance of the system.
The steps suggested for evauation are asfollows:

1. Sdect evauation criteriaand determine the minimum acceptable performance levd for
each criterion selected. 1dedlly these can be found in the requirements document for the
expert system. If thisinformation is missing (which is frequently the case) proposed criteria
should be provided to the developers and the users of the system. For example:

aminium of 90% of the users surveyed will agree that the consstency of answersthe
system provides offers a marked improvement over past practice and that the quality
of answers provided is acceptable.

aminimum of 80% of users surveyed will rate the ease of learning and the user
friendliness of the system as acceptable or highly acceptable.
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aminimum of 80% of users surveyed will rate the gppropriateness of and ease of
answering system queries as acceptable or highly acceptable.

A smpleto use evauation form should be prepared depicting these criteria

2.

Specify how each criterion will be measured. For example each of the criteriamay be
accessed by the users on the following three point scale:

highly acceptable
acceptable
unacceptable

Sdlect asample of users. Idedly aminimum of 12 users should be selected from the
population of users. The greater the number of end usersin the study and the more
representative they are of the target end user community, the more the results can be
viewed with confidence.

Gather data. Have each user to use the expert system on aminimum of six cases. After
each case, have the user fill out the evaluation form, rating each criterion on the three point
scae. Present the Six cases to the usersin random order. Debrief each user by asking for
details on the basis of the rating given.

Andyzethedata Summarize dl of the ratings of each user on each criterion and across dl
usersfor each criterion. Determine if the target level of acceptability has been reached or
exceeded for each criterion. The data can then be analyzed.

Report the results and recommendations. Report on the strengths and weaknesses of the
expert syssiem. Concentrate on suggestions for improving the likelihood of user acceptance
by emphasizing features which receive low ratings from the most users and those that could
be the most quickly and economically improved.

The personnd who digtribute the system and provide field support for the field evauation must
be carefully screened and selected. The wrong selection of support personnel can sabotage
even the very best of expert systems. The field support personne must have the following

cgpabilities:

Expert knowledge of the domain of the expert system. During this phase the field support
staff may be caled upon to not only provide support for the expert system that is
dependent on domain knowledge, but to answer domain specific questions from the end
users. A non domain expert can do irreparable damage to the credibility of the system
during this phase.
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Sophisticated computer skills. The field support personnd have to go into a strange
environment and correctly and efficiently ingall an expert system and then provide training
using this unfamiliar equipment. Instalation problems can dways be expected.

Excdlent language sKillsin the language of the domain experts and end users. Thefied
support personnel must be able to express concepts clearly and concisely to the users at
their duty station and in their language and to understand the nuances that the end userstry
to convey. Anything lessthan FLUENCY in the language of the end usersis not
acceptable. In addition to language skills the field support personnd must have excellent
interpersond kills.

Some of the activities to be conducted in field testing are:

Field operating environment - It is necessary to become acquainted with the field operating
environment the expert syslem will beingtaled in. Even though operating environment
was considered through the domain experts and end users, it will in fact appear different to
every observer and there will be factors that effect operation that were not considered
before the actud ingallation and field trids begin.

Installation of expert systems - The expert system will have to be ingtdled on the
equipment provided by the end user/teter. This step will usualy not be routine as
computers or operating systems, etc., may have to be reconfigured to accommodate the

expert system.

Additiond training for the end user/tester will need to be provided. Regardiess of prior
training, the end user/tester will need support to overcome the various nuances that appear
during field test conditions. At this point it is also necessary to define the roles of various
partieswho participate in the field testing. Who runs the expert system? Who approves
the use of expert system recommendations? \Who applies the recommendations from the
expert system? Who actualy collectsfield data? Who does the preliminary
screening/preparation of any data collected?

After the expert system isingtalled on the end users computer the requirements and terms
for the fied tests must be reviewed. Competing demands on the end user are dways more
extendve a the end users duty station than they were during previous meetings. Itis
critica to get arenewed commitment. The commitment to support the end user/tester in
every way possible must adso be reaffirmed. The end user must understand how critica
his’her support is and that the sponsor vauesthis.

Specific test cases should be identified and discussed. Thisincludes previoudy identified
sample test cases and new conditions that may be encountered in the field.

The forma mechanism for incorporating findings from the field tests should be devel oped
and reviewed in detail with the end user/tester. Also the formal mechanism for sharing
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information between end users/testers must be devel oped and discussed with al end
users/testers.

A find evauation of end user satisfaction should take place after testing has demonstrated that
the expert system has reached its target scope of coverage and level of accuracy.

Distributing and Maintaining Expert Systems

Once the expert system development effort has been completed, the tasks of distribution and
maintenance begin. Although there are no fixed rules governing these tasks, there are some
generd guidelines which can make these tasks easier to perform.

Distribution

There are three mgjor criteriathat adeveloper should follow in order to fecilitate the
digtribution of a given expert system.

1. ldentify and involve the user community before starting the development of an expert
sysem. Thisshould insure that the expert system actudly solvesared set of problems.
Also it will give the user community a vested interest in the testing and application of the
system.

2. Develop the system using standard hardware and software. Although there are a number
of exotic pieces of expert systems hardware and software, the cost of these itemsiis often
high and the uncertainty of surviva of these productsin the market place makesit
unreasonable to expect potentia usersto procure them just to use an expert system.

3. Usedevelopment software that does not require distribution licenses or where an unlimited
distribution license can be purchased for areasonable fee. The time and funding expended
on paying fees for each system distributed, as required for many available devel opment
toals, can become an unwanted adminigtrative and financia burden.

Maintenance

The task of system maintenance is one that should be planned for from the inception of the
expert system development project. Maintenance can be facilitated by following afew good
development rules. Theseinclude:

1. Design the expert system to be as transparent as possible. Since the system maintenance
will probably not be conducted by system designers, it is necessary that the structure of the
expert system be as straightforward and clear as possible.

2. Thedevelopers should use logicd and understandable names for objects and knowledge
structures within the system and avoid the use of cryptic names and obscure abbreviations.

3. Thedevelopers should dso avoid the use of overly complex and obscure software
structures, even though their use may provide some type of performance benefits.
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4. Smplicity should be one of the guiding principas in the development effort.

The system must be well documented. The documentation should be produced as the system
is developed, not as an after thought after the system isfinished. The knowledge engineer
should:

Identify where the system's knowledge resides (e.g., in the knowledge base in the form of
facts and rules and in the inference engine in the form of heuristic search techniques).

Document the inference procedures that the system uses in producing solutions.

Ensure that as part of the documentation an explicit modd of the problem solver is
included

Ensure that the documentation aso provides a comprehensive and well documented test
procedure for the system

The expert system itsalf should contain an extensive set of both user "help” text and
explanation text which explains how the system produced a given solution.

The documentation and the help and explanation text should be produced during the
development phase and not added after the system has been built. One of the guiding
principles that developers should use is "a poorly documented system will have a short useful
life"

Each verson of agiven expert system should have averson number. Thiswill makeit eeser
to provide users with up-dated copies of the system.

Establish a mechanism for soliciting, receiving and acting upon feedback from the user
community. Thiswill facilitate the identification and removal of "bugs' in the system and will
aso make it easier to retrofit the system to satisfy specific user community needs after the
system has been distributed to the user community.
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Appendices

1. Symbolic Evaluation of Atomic Formulas

A common type of atomic formulain arule-based expert system is of the form:
<VARIABLE> <RELATION> <CONSTANT> (A.22)

where <RELATION> isone of therdations, =, <, >, <=, or >=.

The following table shows when an atomic formula of thisform istrue or false given conditions
on <VARIABLE> of sameform, A.2.1.

Inthistable, "TRUTH CONDITION" specifies conditions under which the atomic formulais
truefor al numbersin theinterval. "FALSE CONDITION" specifies conditions under which
the atomic formulas are false for dl numbersin theinterval. The following restrictions on the
variables a, b and c apply:

aisin [-INFINITY INFINITY)
bisin (-INFINITY,INFINITY]
cisin (-INFINITY INFINITY)

ATOMIC FORMULA TRUTH CONDITION FALSE CONDITION
(ab)<c b<=c a>=c

[ab)<c b<=c aC

(ab]<c b<c a>=c

[ab]<c b<c a>=c

(ab)=<c b<=c a>=c

[ab)=<c b<=c ac

(ab]=<c b<=c a>=c

[ab]=<c b<=c ac

[ab]=c a=b=c al=boral=corb!=c
(ab)>c a>=c b<=c

(ab]>c a>=C b<c

[ab)>c ac b<=c

[ab]>c ac b<c

(ab)=>c a>=c b<=c

[ab)=>C a>=c b<=c

(ab]=>c a&>=C b<c

[ab]=>C a&>=C b<c
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2. General Regression Neura Nets

A generd regression neural net (GRNN) isamethod for estimating a function from a et of its
vaues at particular pointsin itsdomain. Although the GRNN agorithm can be put in the form
of aneura net, it isbest understood as an interpolation. In particular, GRNN interpolates from
known data points by computing aweighted average of nearby points. Theweightsin this
average decay exponentidly with distance from the point where the function is being estimated.

Notation

The following notation will be used:

Uppercase letters (e.g., P, X, X2 &tc) denote pointsin the input space.

L owercase letters with subscripts represent numbers for different fields (axes) for the point
named by the corresponding uppercase letter. The subscripts identify which axis the
number represents. Axis subscripts follow any subscripts that are part of the name of the
point. Examples: p2, xi, X2i.

Prerequistesfor GRNN

To carry out aGRNN computation, it is necessary that a distance function be defined between
any two pointsin theinput domain. The Euclidean distance function workswell for GRNNS,
athough any distance function can be used. The Euclidean distance is defined by:

d(P1, P2) = sgrt( SUM( over fiddsi)(pli - p2i)**2)))
A weight function from pairs of pointsto real numbersis defined asfollows:
w(P1,P2) = exp(-K*d(P1,P2))

In other words, the weight assigned to P2 for a GRNN estimate at P1 decays exponentialy
with the distance from P1 to P2. K is parameter that determines how fast the decay occurs.

The GRNN Interpolation
Following isthe GRNN interpolation of afunction fn:
grnn(P1) = SUM (@l points P2 in data set)w(P1,P2)*fn(P2))

This saysthat the GRNN estimate of fn at a point is the weighted average of the known
function vaues, where the weights decay exponentialy with distance from the point where the
edimate is being made.

3. Verification and Validation: Past Practices

Significants numbers of articles on verification and vaidation of knowledge-based systemsfirst
gppeared in the literature in the early 1980's. Many authors who have written about or
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attempted the verification and/or validation of knowledge-base systems have their own
definition of the concepts. The method that they use or the system that they design to
accomplish the task(s) is usudly areflection of that particular definition. A few authors have
asserted that verification and vaidation are the same.

The following tables summarize past work in verification and validation. Complete references
appear in the bibliography.

VALIDATION METHODS THAT HAVE BEEN USED:

Table A.3-1: Vdidation Methods

METHOD EXPERT SYSTEM REFERENCE
Turing Test Variation Mycin Yu, et al., 1979
KBSCD Agarwal, Kannan,Tanniru,1993
Simple Comparison with Diabetes Mellitus Lehmann, et. al., 1993
Expert Tegument Potter & Ronan, 1987
Hemody. Monitoring Koski, et. al., 1991/92
Comparison w/Expert Using | ESPE (Tool Set) Franklin, et. al., 1988
Sensitivity Analysis Prospector Gaschnig, 1979
Comparison w/Expert Using | PNEUMON - 1A Verdaguer, et. al., 1992
Freq. Anal. & Distance
Anal.

VERIFICATION METHODS THAT HAVE BEEN USED:

Table A.3-2: Veification Methods
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METHOD TOOI.‘ REFERENCE
(If Exists)
Tables & Pairwise Rule Rule- Suwa, Scott, Shortliffe, 1982
Comparisons Checker Nguyen, et al.,1987
Check
Decision Tables of ‘Contexts’ ESC Cragun & Steudel, 1987
GRAFCET Renard, Sterling, Brosilow,
1993
Meta-Knowledge EVA Stachowitz, Combs, 1987
Valid Laurent (ESPIRIT-II)
Analytical Hierarchy Process Bahill, Jafar, Moller, 1987
Graphs:
Constraint Connection Freeman, 1985
Flowgraph Fenton, Kaposi, 1987
Parameter Dependency Network Agarwal, Tanniru, 1992
Petri - Nets Agarwal & Tanniru, 1992
Liu & Dillon, 1991
Partitioning:
Graph-Based Jacob & Froscher, 1986
Clustering Cheng & Fu, 1985
Clustering Algorithm Jacob & Froscher, 1990
Category Partition Method Testing Amla & Ammann, 1992
Incidence Matrix Technique IMVER Coenen, Bench-Capon, Kent,
1994
Ripple-Down Rules Kang, Gambetta, Compton,
1994

DOMAIN - INDEPENDENT SOFTWARE TOOLS USED FORV. & V..
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Table A.3-3: V&V Software

TOOL PURPOSE METHOD USED REFERENCE
RITCaG Validation Test Case Generator Gupta, Biegel, 1990
un-named Validation Runs Test Cases Kang & Bahill, 1990
ESPE Validation Sensitivity Analysis Franklin, et al., 1988
Check Verification Tables Nguyen et al., 1987
ESC Verification Decision Tables Cragun, Steudel, 1987
GRAFCET Verification Graphical Design Renard, Sterling, Brosilow,
Lang./Dec. Tables 1993
un-named Verification Decision Tables Vanthienen,Dries, 1993
EVA Verification Meta-language Stachowitz,Combs,1987
Valid Verification Meta-language Jean-Pierre Laurent
(ESPIRIT-II project) - Europe
BEACON Verification Graphs Freeman, 1985
un-named Verification Layered Support Graphs | Valiente, 1992
VALIDATOR Ver. & Valid. | Syntax & Semantics Jafar & Babhill
Checks
COVER Verification First-Order Logic Preece, et al. 1992
Expert Choice | Verification Analytical-Hierarchy Babhill,Jafar, Moller, 1987
Process
Spot Verification Prolog Rule Base Lane, 1989
KB-Reducer Verification KB reduction Ginsberg, 1988
IMVER Verification Incidence matrices Coenen, Bench-Capon, Kent,
1994
un-named Verification Clustering Algorithm Jabob & Froscher, 1990
in-progress Ver. & Valid. Meta-language, GUI, Traylor, Schwuttke, Quan,

Visual Guide to Rule in
Flow-Graphs

1994
(JPL-NASA)

4. Knowledge Base 1 Illustrations
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ILLUSTRATIONS OF KNOWLEDGE BASE 1

The knowledge base 1 (KB1) hassix rules. There are seven variables which can take two
possible values. Itis, therefore, a seven dimensional, binary problem. Let’sfocuson rule 3to
understand the illustrations of KB1. It has two hypotheses, and one conclusion. The
hypotheses are “ Do you buy lottery tickets?’="yes’, and “Do you currently own stock?’="yes”.
They are associated with the logical operator “or”. The consequent is*Risk Tolerance”="low”.

DO YOU BUY LOTTERY TICKETS?=YES

DO YOU BUY LOTTERY
TICKETS?

DO YOU CURRENTLY

OWN STOCK?
NO YES

YES NO

Figurel

DO YOU BUY LOTTERY
TICKETS?

DO YOU CURRENTLY OWN STOCKS?=YES

DO YOU CURRENTLY

OWN STOCK?
NO YES

YES NO

Figure2

For the two variables of the hypothesesin rule 3, there are two possible values: “yes’ or “no”.
The number of possible combinations of values for the variablesisfour. These four
combinations appear in figure 1 as four square regions defined by the closed boundary (defining
the domain of the variables) and the line boundaries separating the possible values for each

variable. Each square is a Hoffman region.

If variable “Do you buy lottery tickets?“ is assigned avalue “yes’, then two of the four regions
arerelevant. Infigure 1, they are shown with ahatch. The two regions corresponding to
hypothesis “Do you currently own stock?'="yes’ are hatched in figure 2.

DO YOU BUY LOTTERY TICKETS?=YES
AND
DO YOU CURRENTLY OWN STOCKS?=YES

DO YOU BUY LOTTERY
TICKETS?

DO YOU CURRENTLY

OWN STOCK?
NO YES

YES NO

Figure3

DO YOU BUY LOTTERY TICKETS?=YES
OR
DO YOU CURRENTLY OWN STOCKS?=YES

DO YOU CURRENTLY
OWN STOCK?

DO YOU BUY LOTTERY
TICKETS? NO YES

YES NO

Figure4
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In two dimensions, a Hoffman region is a surface as shown in thisexample. In three
dimensions, it would be avolume, ect...

Thelogical operators are “and”, “or”, and “not”. Thelast oneis obvious in the case of a binary
system: “not””yes’=*no”. Infigure 1 and 2, the Hoffman regions corresponding to each
hypothesis of rule 3 are hatched. When combined with an “and” logical operator, the
intersection of thetwo sets of Hoffman regions that logical expression. It isshown in figure 3.
The intersection in this case is a unique Hoffman region.

Inrule 3, an“or” logical operator connects the two hypotheses. In this case, the union of the
two sets of Hoffman regionsistaken , as shown in figure 4.

RULE 3 RULE 3
DO YOU BUY LOTTERY TICKETS?=YES DO YOU BUY LOTTERY TICKETS?=YES
OR OR
DO YOU CURRENTLY OWN STOCKS?=YES DO YOU CURRENTLY OWN STOCKS?=YES
DO YOU CURRENTLY DO YOU CURRENTLY
DO YOU BUY LOTTERY DO YOU BUY LOTTERY
TICKETS? OWN STOCK? TICKETS? OWN STOCK?

YES

NO YES
NO
YES NO
YES
THEN
RISK RISK TOLERANCE=LOW
TOLERANCE?
LOW
Figure5 Figure6

Next, the region defined by the logical expression of hypothesesis labeled with its rule number.
For rule 3, the three Hoffman regions are labeled with acircled 3, asshown in figure 5. The
consequent for the ruleis linked to the label of the region of hypotheses. In figure 6, a curved
arrow starts at the circled 3, and ends at the value “low” of the variable “Risk Tolerance”.
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RULE 3 AND 4: RULE 3 AND 4:

DO YOU BUY LOTTERY TICKETS?=NO OVERLAP
AND
DO YOU CURRENTLY OWN STOCKS?=NO
DO YOU BUY LOTTERY DO YOU URRENTLY
DO YOU CURRENTLY TICKETS? vEs OWN STOCK?

DO YOU BUY LOTTERY

OWN STOCK? TICKETS?
YES
YES
THEN G
RISK TOLERANCE=LOW
RISK TOLERANCE?
TOLERANCE? HIGH HIGH
: Figure8
Figure? 9

At this point, each rule can be represented using this scheme. Rule 4 has the same variablesin its
hypotheses and conclusions. Figure 7 shows the graphical representation of rule 4, and figure 8
shows rules 3 and 4 together.

DO YOU OWN

DO YOU OWN NO A LUXURY CAR?

YES

DO YOU CURRENTLY
DO YOU BUY OWN STOCKS?
LOTTERY TICKETS? NO '

YES

DISCRETIONARY

HIGH NO INCOME EXISTS?

RISK
TOLERANCE?
YES
LOW
RULES1THRU 6 \
BANK STOCKS
. ACCOUNTS
Figure9

All six rules are shown in figure 9. Note that three clusters of rules become apparent: {R3, R4}
in the upper left corner, { RS, R6} in the upper right corner, and { R1, R2} in the lower center of

thefigure..
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HYPOTHESIS

DO YOU BUY
LOTTERY TICKETS?
DO YOU CURRENTLY
OWN STOCKS?
DO YOU OWN
A BOAT?

DO YOU OWN

A LUXURY CAR?
RISK
TOLERANCE
DISCRETIONARY
INCOME EXISTS
STOCKS
INVESTMENTS
BANK ACCOUNT

NO
YES
NO
YES
NO
YES
NO
YES
Low
HIGH
NO
YES

NO
DO YOU BUY
LOTTERY TICKETS?

YES

NO
DO YOU CURRENTLY
OWN STOCKS?

YES

NO
DO YOU OWN
A BOAT

YES

NO

DO YOU OWN
A LUXURY CAR?
YES

Low

RISK
TOLERANCE

CONCLUSION

HIGH

NO

DISCRETIONARY
INCOME EXISTS?

YES

STOCKS
INVESTMENTS
BANK ACCOUNTS

Figure 10

For knowledge bases other than binary systems and with more than two hypothesesin rules, an
aternativeillustration is proposed. An incidence matrix, with rule numbers asvalues, is
developed. Therules are clustered using their commonality of hypotheses and conclusions.

The clusters are then ordered so that the bandwidth of the incidence matrix is minimum. Within
acluster, the hypotheses are placed before the conclusions. Figure 10 shows the final incidence
matrix for KB1. Note that the partitions are evident. There are three sub-matrices found in the
lower triangle of the incidence matrix. They are the smallest matrices which include all
variables of acluster.
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DO YOU BUY NO L1 L1
LOTTERY TICKETS? VES | 2 Lo —
DO YOU CURRENTLY NO s
|
OWN STOCKS? VES < o ) | L
DO YOU OWN NO B1 |
A BOAT? YES B2 o T
DO YOU OWN NO C1
A LUXURY CAR? YES c2 B1 " ‘
RISK LOW R1 B2 ‘ > ;
2 D1

TOLERANCE? HIGH R2 S > > LEGEND
DISCRETIONARY NO D1 C1 | D2 T__ AND
INCOME EXISTS? YES 0o C2 —-—-p oR
INVESTMENTS STOCKS 11

BANK ACCOUNT | |2

Figure 11

Another method of representing a knowledge base is the petri-net method. Each variable is given
aname, and each value, adigit. For example, the variable “Do you buy lottery tickets?’ is
assigned the letter “L”, and the values“no” and “yes’, “1” and “2”, respectively. For example,
the hypotheses “Do you buy lottery tickets?’="no” isassigned to variable “L1". In Figure 11, a
table in the upper left corner lists the correspondence between the hypotheses and the variables for
the knowledge base KB1. There are also two graphical representations of KB1. The upper one
relates the variables without details of the logical syntax. The lower one provides those details.
The dashed line indicates that the hypotheses are subjected to logical operator “or”, and a solid
line, “and”, as shown in the legend.



CASE STUDIESOF COMPLETENESS AND CONSISTENCY

The partition { R3,R4} of KB1 isused to illustrate the concept of completeness and consistency.
In cases other than the first one, the two rules are modified by changing either the logical
operator or the conclusions.

CASE 1: Complete and consistent subsystem

DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS? RULE 3:
NO YES DO YOU BUY LOTTERY TICKETS?=YES
OR
YES ‘ DO YOU CURRENTLY OWN STOCKS?<YES
THEN

RISK TOLERANCE=LOW

RULE 4:
DO YOU BUY LOTTERY TICKETS?=NO
RISK AND
TOLERANCE? | Hidh DO YOU CURRENTLY OWN STOCKS?=NO
THEN
FIGURE 1 RISK TOLERANCE=HIGH
DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS?

COMPLETENESS CHECK FOR SUBSY STEM
LOW OR HIGH

(A OR B) OR (NOT A AND NOT B)

(A ORB OR NOT A) AND (A OR B OR NOT B)
TRUE AND TRUE

TRUE

COMPLETE

TOLERANCE? L

FIGURE 2
DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS?
NOT A B

CONSISTENCY CHECK FOR SUBSY STEM

LOW AND HIGH

(A OR B) AND (NOT A AND NOT B)

(A AND NOT A AND NOT B) OR (B AND NOT A AND NOT B)
FALSE OR FALSE

FALSE

CONSISTENT

TOLERANCE?
LOW HIGH

FIGURE 3
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All Hoffman regions are assigned to a unique rule. The results of the formal procedure for
checking completeness and consistency are shown in figures 2 and 3. In both checks, the
procedures starts at the conclusions. A logical expression is built-up with all possible values of
the variables in the conclusions

CASE 2: Incomplete but consistent partition

DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS? RULE 3:
DO YOU BUY LOTTERY TICKETS?<YES
AND
DO YOU CURRENTLY OWN STOCKS?=YES
THEN
RISK TOLERANCE=LOW

RULE 4:
DO YOU BUY LOTTERY TICKETS?=NO
AND
DO YOU CURRENTLY OWN STOCKS?=NO
LOW HIGH THEN
FIGURE 4 RISK TOLERANCE=HIGH

TOLERANCE?

The logical operator in rule 3 was changed from an “or” to an “and”. Two Hoffman regions are
without rule assignment shown by blank patterns. This partition has an incomplete set of rules.

DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS?

COMPLETENESS CHECK FOR SUBSY STEM

LOW OR HIGH

(A AND B) OR (NOT A AND NOT B)

(A AND B OR NOT A) AND (A AND B OR NOT B)
TRUE AND TRUE

TRUE

RISK COMPLETE

TOLERANCE?
L H
FIGURE 5
DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS? CONSISTENCY CHECK FOR SUBSY STEM
<X LOW AND HIGH
(A AND B) AND (NOT A AND NOT B)
FALSE
CONSISTENT

RISK

TOLERANCE?
LOW

FIGURE 6
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CASE 3: Complete but inconsistent partition

RULE 3:
DO YOU BUY LOTTERY TICKETS?=YES
OR
DO YOU CURRENTLY OWN STOCKS?=YES
DO YOU CURRENTLY THEN

OWN STOCKS? RISK TOLERANCE=LOW

DO YOU BUY

LOTTERY TICKETS? YES

RULE 4:
DO YOU BUY LOTTERY
TICKETS?=NO
OR
DO YOU CURRENTLY OWN
STOCKS?=-NO
THEN

RISK TOLERANCE=HIGH
RISK

TOLERANCE? HIGH

LOW

Figure?7

The logical operator in rule 4 was changed from an “and” to an “or”. Two Hoffman regions are
assigned to two distinct rules shown here by an overlap in the hatch patterns. The partition has an
inconsistent set of rules.

DO YOU CURRENTLY

DO YOU BUY OWN STOCKS? COMPLETENESS CHECK FOR SUBSY STEM
LOTTERY TICKETS? LOW OR HIGH
(A AND B) OR (NOT A AND NOT B)
A TRUE
COMPLETE

RISK

TOLERANCE? HIGH

LOW
Figure8
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DO YOU CURRENTLY

DO YOU BUY OWN STOCKS?
LOTTERY TICKETS?

LOW AND HIGH
(A OR B) AND (NOT A OR NOT B)

TRUE OR TRUE

TRUE
INCONSISTENT

RISK
TOLERANCE? HIGH

LOW

Figure9
CASE 4. Rulesthat can be lumped

DO YOU BUY

LOTTERY TICKETS? DO YOU CURRENTLY

OWN STOCKS?
RULE 3:
DO YOU BUY LOTTERY TICKETS?<YES
OR
DO YOU CURRENTLY OWN STOCKS?=YES
THEN
RISK TOLERANCE=LOW
RULE 4:
DO YOU BUY LOTTERY TICKETS?=NO
AND
DO YOU CURRENTLY OWN STOCK S?=NO
THEN
HIGH RISK TOLERANCE=LOW
LOW
Figure 10

The conseguent in rule 4 was changed to be the same as the one for rule 3. Thetwo rulesare
consistent, but they should be lumped into one.

CONSISTENCY CHECK FOR SUBSY STEM

(A ORB AND NOT A) OR (A OR B AND NOT B)
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ILLUSTRATIONSFOR PARTITIONING OF KNOWLEDGE BASE 1

The concept of relations was introduced in chapter 7. It is applied to KB1 to determine its
subsystems. Each subsystem can be represented by a function which has a domain and arange
shown in figure 1 for the subsystem “Risk Tolerance ".

RISK TOLERANCE DO YOU BUY
SUBSYSTEM LOTTERY TICKETS?

DO YOU BUY DO YOU CURRENTLY
LOTTERY TICKETS? OWN STOCKS?

DO YOU OWN
A LUXURY CAR?Z,

DO YOU OWN
A BOAT?
DO YOU CURRENTLY
OWN STOCKS?

DISCRETIONARY
NCOME EXISTS2

RANGE
TOLERANCE? IMMEDIATE
DEPENDENCY
RELATIONS
Figurel Figure2

In figure 2, the immediate dependency relations of variables on variables are shown by
connections. In order to identify the clusters of variables of each subsystem, an algebric
procedure was defined. Firgt, two relations are input: 1) the immediate dependency of rules on
variables (shown in figure 3), and 2) the immediate dependency of variables on rules shown in
figure 4).

>
RULE % 2 VARIABLESIN CONCLUSIONS

DEPENDENCY Lz & 26 | »

RELATIONS N < 0 © 516 | = =5 ol < E

OF RULES w “51 o w w w DEPENDENCY % = % S i 8 5% E
5 z [}

ON VARIABLES 2| & E 2 2 2 RELATIONS Sx[2e [ 28| 25 Slgu | &

2 OF RULES 3iL[3b |35 | 3% glez| &

onvARIABLES B >E|>2 | >Q [ >3] %3|88 | =

oo|loz oo o 25|22 z

[al sl o< o< x| o= -

DO YOU BUY
LOTTERY TICKETS? 1 1

DO YOU CURRENTLY
OWN STOCKS? 1 1

DO YOU OWN
ABOAT 1 1

DO YOU OWN
A LUXURY CAR?

RULE

RISK
TOLERANCE 1 1

VARIABLESIN HYPOTHESES

DISCRETIONARY
INCOME EXISTS? 1{ 1

INVESTMENTS
S
Figure3 Figure4
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VARIABLESIN HYPOTHESES

The terms left blank in the matrix are zero. The
VARIABLES IN CONCLUSIONS product of matrix A from figure 3 and matrix B

5 |2 . from figure 4 is called matrix C, shown in figure
g & 20 | o ; ion i
8|8 |2 §% . 5B E 5. If subjected to a boolean operation, its non-

IMMEDIATE = =) > o o w .

oerenoeney 122158 1S |SE | 2 |20 | 2 zero terms become unity. It correspondsto all

RELATIONS owIo Z o5 |23 G |53 w . . .

Svamess f85|25 |82 |83 (B8 (22| ¢ connectionsin figure 2.
DO YU BUY erer ) In figure 5, the immediate dependency relation
DO YOU CURRENTL R matrix is shown prior to the boolean operation.
OWN STOCKS? .y . . .

The composition of this relation may be btained
2 . . . . .

A aoar o™ by multiplying matrix C by itsdlf. Figure 6
DO YOU OWN 2 showsthe result as matrix D. It correspondsto
A LUXURY CAR? . ) 3 . . .
- ) the connection shown in solid linein figure 7,
TOLERANCE remembering that the composition operation
DISCRETIONARY 2 . .
INCOME EXISTS? provides al possible paths to an output from the
INVESTMENTS i nputs.

Figure5

The dependency relation is the union of the immediate dependency relation and the composition
operation. Itisshowninfigure 8 and 9.

DO YOU OWN
A BOAT?
VARIABLES IN CONCLUSIONS 7
|
|

DO YOU OWN
A LUXURY CARY
‘
LOTTERY TICKETS? !
DO YOU CURRENTLY
|
\ |
i

COMPLETION

LOTTERY TICKETS?
INVESTMENTS

DO YOU BUY

DO YOU CURRENTLY
OWN STOCKS?

DO YOU OWN

A BOAT

DO YOU OWN

A LUXURY CAR?
TOLERANCE
DISCRETIONARY
INCOME EXISTS?

RISK

DO YOU BUY
LOTTERY TICKETS?

[N

DO YOU CURRENTL
OWN STOCKS? 1

DO YOU OWN 1
A BOAT

DISCRETIONARY
NCOME EXISTS2

DO YOU OWN 1
A LUXURY CAR?

VARIABLESIN HYPOTHESES

RISK
TOLERANCE

DISCRETIONARY
INCOME EXISTS?

INVESTMENTS
I

COMPOSITION

Figure6 Figure2
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VARIABLESIN HYPOTHESES

DEPENDENCY
RELATIONS
OF VARIABLES
ON VARIABLES

DO YOU BUY

LOTTERY TICKETS?

DO YOU CURRENTLY

OWN STOCKS?

VARIABLES IN CONCLUSIONS

DO YOU OWN

A BOAT

DO YOU OWN

A LUXURY CAR?

RISK

TOLERANCE

DISCRETIONARY

INCOME EXISTS?

INVESTMENTS

DO YOU BUY
LOTTERY TICKETS?

[

[N

DO YOU CURRENTL
OWN STOCKS?

DO YOU OWN
A BOAT

DO YOU OWN
A LUXURY CAR?

RISK
TOLERANCE

DISCRETIONARY
INCOME EXISTS?

INVESTMENTS
I

Figure8

DO YOU OWN DO YOU OWN
A BOAT? A LUXURY CAR?,

DO YOU BUY

LOTTERY TICKETS?
DO YOU CURRENTLY

OWN STOCKS?

DISCRETIONARY

RISK
TOLERANCE?,

DEPENDENCY
RELATIONS

Figure9
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